冯爱民

个人信息Personal Information

副教授 硕士生导师

招生学科专业:
计算机科学与技术 -- 【招收硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院

性别:女

毕业院校:南京航空航天大学

学历:博士研究生毕业

学位:工学博士学位

所在单位:计算机科学与技术学院

办公地点:南航将军路校区计算机科学与技术学院210室

联系方式:13921431971(微信同号)

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Masked Diffusion Meets 3D: Cross-Modal Learning for Precise Anomaly Detection

点击次数:

发表刊物:IEEE International Conference on Multimedia & Expo

关键字:Multi-modal Anomaly detection, Diffusion re construction, Cross-modal Learning

摘要:In industrial anomaly detection, the combination of 3D point cloud with RGB has become a focus of research. Existing methods, often based on multimodal fusion or reconstruction, struggle with generalization in complex industrial scenarios and fail to reconstruct high-quality normal objects, limiting their suitability. In this paper, we propose a framework called MCAD. First, we use a condition-guided diffusion process with masked reconstruction for high-quality RGB features. Secondly, we train a lightweight network to learn 3D point-cloud features from RGB data. Finally, anomalies can be detected by fusing intra-modal reconstruction errors and cross-modal learning errors, achieving trade-offs in inference accuracy, computational efficiency, and memory space. As we know at present, our study is the first to evaluate diffusion frameworks in multimodal anomaly detection datasets, achieving state-of-the-art performance with image-level AUROC scores of 96.4% and 91.2% on MVTec 3D and Eyecandies datasets, respectively, marking a significant advance in diffusion-based anomaly detection.

学科门类:工学

文献类型:C

字数:3000

是否译文:

收录刊物:SCI

通讯作者:冯爱民