冯爱民

个人信息Personal Information

副教授 硕士生导师

招生学科专业:
计算机科学与技术 -- 【招收硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院

性别:女

毕业院校:南京航空航天大学

学历:博士研究生毕业

学位:工学博士学位

所在单位:计算机科学与技术学院

办公地点:南航将军路校区计算机科学与技术学院210室

联系方式:13921431971(微信同号)

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

GRAD:Bi-Grid Reconstruction for Image Anomaly Detection

点击次数:

发表刊物:IEEE International Conference on Multimedia & Expo

关键字:Image Anomaly Detection, Self-supervised Method, Reconstruction Method, Grid Sampling

摘要:In image anomaly detection, significant advancements have been made using un- and self-supervised methods with datasets containing only normal samples. However, these approaches often struggle with fine-grained anomalies. This paper introduces GRAD: Bi-Grid Reconstruction for Image Anomaly Detection, which employs two continuous grids to enhance anomaly detection from both normal and abnormal perspectives. In this work: 1) Grids as feature repositories that improve generalization and mitigate the Identical Shortcut (IS) issue; 2) An abnormal feature grid that refines normal feature boundaries, boosting detection of fine-grained defects; 3) The Feature Block Paste (FBP) module, which synthesizes various anomalies at the feature level for quick abnormal grid deployment. GRAD's robust representation capabilities also allow it to handle multiple classes with a single model. Evaluations on datasets like MVTecAD, VisA, and GoodsAD show significant performance improvements in fine-grained anomaly detection. GRAD excels in overall accuracy and in discerning subtle differences, demonstrating its superiority over existing methods.

论文类型:论文集

文献类型:C

字数:6000

是否译文:

收录刊物:SCI

通讯作者:冯爱民