• 其他栏目

    朱清华

    • 副教授 硕士生导师
    • 招生学科专业:
      航空宇航科学与技术 -- 【招收硕士研究生】 -- 航空学院
      机械 -- 【招收硕士研究生】 -- 航空学院
    • 主要任职:中国航空学会直升机分会委员、总干事
    • 其他任职:型号总师
    • 性别:男
    • 毕业院校:南京航空航天大学
    • 学历:博士研究生毕业
    • 学位:工学博士学位
    • 所在单位:航空学院/直升机全国重点实验室
    • 办公地点:明故宫校区5号楼-315室
    • 联系方式:025-84892196
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Identifying Resting-State Multifrequency Biomarkers via Tree-Guided Group Sparse Learning for Schizophrenia Classification

    点击次数:

    所属单位:计算机科学与技术学院/人工智能学院/软件学院

    发表刊物:IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS

    关键字:Schizophrenia fMRI low-frequency fluctuations tree-guided group lasso multi-kernel learning

    摘要:The fractional amplitude of low-frequency fluctuations (fALFF) has been widely used as potential clinical biomarkers for resting-state functional-magneticresonance-imaging-based schizophrenia diagnosis. However, previous studies usually measure the fALFF with specific bands from 0.01 to 0.08 Hz, which cannot fully delineate the complex variations of spontaneous fluctuations in the resting-state brain. In addition, fALFF data are intrinsically constrained by the brain structure, but most of the traditional methods have not consider it in feature selection. For addressing these problems, we propose a model to classify schizophrenia in multifrequency bands with tree-guided group sparse learning. In detail, we first acquire the fALFF data in multifrequency bands (i.e., slow-5: 0.01-0.027 Hz, slow-4: 0.027-0.073 Hz, slow-3: 0.073-0.198 Hz, and slow-2: 0.198-0.25 Hz). Then, we divide the whole brain into different candidate patches and select those significant patches related to schizophrenia using random forest-based important score. Moreover, we use tree-structured sparse learning method for feature selection with the above patch spatial constraint. Finally, considering biomarkers from multifrequency bands can reflect complementary information among multiple-frequency bands, we adopt the multikernel learning method to combine features of multifrequency bands for classification. Our experimental results show that these biomarkers from multifrequency bands can achieve a classification accuracy of 91.1% on 17 schizophrenia patients and 17 healthy controls, further demonstrating that the multifrequency bands analysis can better account for classification of schizophrenia.

    ISSN号:2168-2194

    是否译文:

    发表时间:2019-01-01

    合写作者:Huang, Jiashuang,Zhu, Qi,Hao, Xiaoke,Shi, Xiaomeng,Gao, Shuzhan,Xu, Xijia,张道强

    通讯作者:Xu, Xijia,张道强,朱清华