杨忠
  • 招生学科专业:
    控制科学与工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
  • 学位:工学博士学位
  • 职称:教授
  • 所在单位:自动化学院
教师英文名称:Yang Zhong
电子邮箱:
所在单位:自动化学院
学历:南京航空航天大学
毕业院校:南京航空航天大学

当前位置: 中文主页 >> 科学研究 >> 论文成果
标题:
Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things
点击次数:
所属单位:
自动化学院
发表刊物:
Eurasip J. Wireless Commun. Networking
摘要:
New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance. © 2018, The Author(s).
ISSN号:
1687-1472
是否译文:
发表时间:
2018-12-01
合写作者:
Hu, Guoxiong,Zhu, Maohu,Huang, Li,Xiong, Naixue
通讯作者:
杨忠
发表时间:
2018-12-01
扫一扫用手机查看