![]() |
个人信息Personal Information
教授
招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
学历:南京航空航天大学
学位:工学博士学位
所在单位:电子信息工程学院
联系方式:nuaaimage@163.com
电子邮箱:
扫描关注
PCA和布谷鸟算法优化SVM的遥感矿化蚀变信息提取
点击次数:
所属单位:电子信息工程学院
发表刊物:遥感学报
关键字:遥感;矿化蚀变信息提取;主成分分析(PCA);支持向量机(SVM);布谷鸟算法;波段比值法;
摘要:为了进一步提高遥感矿化蚀变信息提取的精度,本文提出了一种基于主成分分析PCA (Principal Component Analysis)和布谷鸟算法优化支持向量机SVM (Support Vector Machine)的遥感矿化蚀变信息提取方法。首先,通过波段比值法增强研究区遥感图像中的矿化蚀变信息,并获得比值图像;然后,对比值图像进行主成分分析,进而提取训练样本;接着,利用SVM对训练样本进行训练,同时采用布谷鸟算法求取SVM的最优核参数及惩罚因子,构造最优SVM模型;最后,运用最优SVM模型完成矿化蚀变信息提取。选择青海省五龙沟地区为研究区,提取羟基及铁染蚀变信息。实验结果表明,与主成分分析法、基于光谱角法和SVM的方法、基于粒子群和SVM的方法及基于波段比值、PCA和粒子群优化SVM的方法等4种方法相比,本文方法获得的遥感矿化蚀变信息和已知矿点的吻合度最高,提取效果最好。
ISSN号:1007-4619
是否译文:否
发表时间:2018-09-25
合写作者:盛东慧,周杨
通讯作者:吴一全