![]() |
个人信息Personal Information
教授
招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
学历:南京航空航天大学
学位:工学博士学位
所在单位:电子信息工程学院
联系方式:nuaaimage@163.com
电子邮箱:
扫描关注
基于改进CV模型的煤矿井下早期火灾图像分割
点击次数:
所属单位:电子信息工程学院
发表刊物:煤炭学报
关键字:矿井;早期火灾图像;图像分割;CV模型;区域拟合中心;区域能量系数;中值绝对差;
摘要:煤矿井下早期火灾图像中火焰区域、火焰余辉及非火焰高灰度干扰区域三者的灰度值十分接近,利用传统的Chan-Vese(CV)模型很难将火焰区域精确地提取出来。针对这一问题,提出了一种改进的CV模型以实现煤矿井下早期火灾图像的精确分割。在计算目标和背景区域拟合中心时,引入自适应权值进行加权平均,充分考虑了像素点灰度值与拟合中心的差异,并据此确定该点对拟合中心的贡献度,更加精确地计算目标和背景区域的拟合中心;为了加速模型的演化,引入曲线内外区域像素的中值绝对差,替换模型中的内外区域能量系数,提高模型分割效率。最终达到快速提取早期火灾图像中火焰区域的目的。大量实验结果表明,与现有的Otsu算法、CV模型、引入能量权重的CV模型、引入梯度信息的CV模型以及两种类似提出模型的CV模型相比,利用改进CV模型对煤矿井下早期火灾图像,能取得更好的分割效果,并且满足实时性要求。
是否译文:否
发表时间:2017-06-15
合写作者:韩斌,宋昱
通讯作者:吴一全