扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 王莉 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/wl1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    电气工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    能源动力 -- 【招收博士、硕士研究生】 -- 自动化学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
The Detection of Dc Arc Fault Based on DFA

点击次数:
所属单位:自动化学院
发表刊物:IEEE Int. Conf. Progn. Heal. Manag., ICPHM
摘要:Dc arc fault has no zero-crossing point and is difficult to identify, which poses a great challenge to the security and stability of the dc power supply system. Detrended fluctuation analysis (DFA) is suitable for analyzing non-stationary signal. This paper, based on the experimental data of current AC component from automatic fault diagnosis platform, utilizing the (DFA) algorithm to extract arc fault characteristic, the least squares support vector machine (LS-SVM) is as the classifier to identify the arc fault, the experiment show that the proposed method is with satisfactory fault classification performance which is better than that based on time-frequency analysis. © 2018 IEEE.
是否译文:否
发表时间:2018-08-27
合写作者:Yin, Zhendong,Zhang, Yaojia
通讯作者:王莉,Yin, Zhendong,王莉

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)