王然
开通时间:..
最后更新时间:..
欢迎报考!!!
欢迎校内外本科生(尤其推免生)、硕士生报考我的硕士、博士研究生(计算机科学与技术、软件工程、电子信息),团队科研经费充足,提供国内外学术交流机会,表现优异者,可推荐到新加坡南洋理工大学、加拿大约克大学、阿尔伯塔大学、清华大学、浙江大学、武汉大学、中山大学等知名高校攻读博士学位。 研究生期间可参与导师主持的国家级项目,及与国内知名企业如中国电信、中兴通讯、国家电网、宝武钢铁集团的研究课题。研究方向包括:精益网络(LeaNet)架构及其关键技术、能源互联网、人工智能应用等。
每年招收博士生1-2名,硕士生4-5名,要求有较好的数理基础、编程能力和英文读写能力,感兴趣的同学请通过wangran@nuaa.edu.cn联系。
News!!!
1、我们的论文“Joint Energy and Computation Workload Management for Geo-distributed Data Centers”被IEEE Transactions on Green Communications and Networking(IF:5.3)录用-2025.04.07
2、我们的论文“Joint Deployment and Migration of Service Function Chains for Mobility-Aware Services in an Edge-Cloud Environment”被IEEE Transactions on Cognitive Communications and Networking(IF:7.4,中科院一区)录用-2025.03.26
3、王然受IEEE Open Journal of the Communications Society (IEEE OJ-COMS) 编委会(Editorial Board)邀请,担任副主编(Associate Editor)-2025.01.18
4、我们的论文“Service Function Chain Deployment with Intrinsic Dynamic Defense Capability”被IEEE Transactions on Mobile Computing(CCF-A,中科院一区)录用-2025.01.17
5、我们的论文“Enabling Ultralow-Latency Services with Ubiquitous Mobility by Means of a Compact Network Architecture”被IEEE Transactions on Mobile Computing(CCF-A,中科院一区)录用-2025.01.03
6、我们的论文“Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II”被IEEE Transactions on Intelligent Transportation Systems(CCF-B,中科院一区top)录用-2024.12.10
7、我们的论文“Service Function Chain Deployment with VNF-Dependent Software Migration in Multi-domain Networks”被IEEE Transactions on Mobile Computing(CCF-A,中科院一区)录用-2024.12.06
8、王然晋升为IEEE Senior Member-2024.12.02
9、王然获得2023年度江苏省科学技术二等奖(第三完成人)-2024.10.10
10、我们的论文“Towards Networking and Routing in 6G Satellite-Terrestrial Integrated Networks: Current Issues and a Potential Solution”被IEEE Communications Magazine(IF:8.3)录用-2024.07.23
11、王然获得2024中兴通讯产学研基金项目《面向5G全连接工厂的端到端网络可靠性评价技术》资助-2024.05.06;
12、我们的论文“Dynamic Discrete Topology Design and Routing for Satellite-Terrestrial Integrated Networks”被IEEE/ACM Transactions on Networking(CCF-A)录用-2024.05.02
13、我们的论文“EdgeVision: Towards Collaborative Video Analytics on Distributed Edges for Performance Maximization”被IEEE Transactions on Multimedia(中科院一区top)录用-2024.02.24
14、我们的论文“Priority-Aware Deployment of Autoscaling Service Function Chains based on Deep Reinforcement Learning”被IEEE Transactions on Cognitive Communications and Networking(中科院一区)录用-2024.01.23
15、我们的论文“Multiobjective Multihydropower Reservoir Operation Optimization with Transformer-based Deep Reinforcement Learning”被Journal of Hydrology(中科院一区top)录用-2024.01.22
16、我们的论文“Efficient Deployment of Partial Parallelized Service Function Chains in CPU+DPU-Based Heterogeneous NFV Platforms”被IEEE Transactions on Mobile Computing(CCF-A,中科院一区)录用-2024.01.20
17、我们的论文,“Deep Reinforcement Learning-based Multi-Objective Optimization for Mobile Charging Services in Internet of Electric Vehicles”获得ACM MobiArch’23 最佳论文(Best Paper Award)-2023.10.06
18、王然入选斯坦福大学2023年全球前2%顶尖科学家榜单!(Data source: https://elsevier.digitalcommonsdata.com/datasets/btchxktzyw/6)-2023.10.04
王然,博士、博士生导师,南京航空航天大学计算机科学与技术学院副教授,获得2023年度江苏省科学技术二等奖(排名3)、2022中国通信学会科学技术二等奖(排名4),入选斯坦福大学2023年全球前2%顶尖科学家榜单,获新加坡“南洋工程博士奖(Nanyang Engineering Doctorial Scholarship Award)”,南航“长空学者”(2022入选),江苏省“双创博士”、“IEEE Outstanding Leadership Award”。担任IEEE Senior Member,IEEE PES(中国)智能电网与新技术委员会理事,中国计算机学会(CCF)高级会员,CCF服务计算专委会执行委员、CCF普适计算专委会委员。2011年7月毕业于哈尔滨工业大学英才学院(实验学院),获工学学士学位;2016年4月毕业于新加坡南洋理工大学计算机科学与工程学院,获博士学位。2015年10月到2016年8月在新加坡南洋理工大学电子电气工程学院做博士后研究员。主持国家重点研发计划课题(2022-2025)、国家自然科学基金面上项目(2022-2025)、国家自然科学基金青年项目(2019-2021)、江苏省自然科学基金青年项目(20万)、科技部外专项目(30万)、中国计算机学会-腾讯犀牛鸟基金(全世界155项申请中只有14人获得)、国家博士后特助、国家博士后科研基金面上项目、江苏省博士后A类资助(2017年南航唯一A类)、多项校企产学研合作课题等;参与科技部重点研发项目2项,发表高水平科研论文100余篇,获得ACM MobiArch’23最佳论文(Best Paper Award);Google Scholar他引2000余次;第1作者在Springer上出版英文专著1部,出版江苏省十二五规划教材1部(清华大学出版社),并获得南航十三五优秀教材二等奖;以第一发明人授权美国专利2项,国家发明专利20项,牵头主持通信行业标准1项。担任2021 IEEE HPCC (CCF C 会议) Special Session: Distributed Intelligence for Future High Performance Unmanned Mobile Systems, Technical Program Chair,担任2022 IEEE International Conference on Embedded and Ubiquitous Computing, Publication Chair,担任IEEE OJ-COMS领域副主编(Associate Editor in Big Data and Machine Learning for Communications );
科技奖励:
2022中国通信学会科学技术二等奖(第四完成人)
2023江苏省科学技术二等奖(第三完成人)
产业应用:
科研成果应用于工业互联网、智能电网等多个领域,助力我国钢铁、电网等传统行业数字化转型升级。与马钢集团合作的项目入选“工信部5G+工业互联网十个典型应用场景和五个重点行业实践”项目,研发的基于端-云架构的数据兼容并发优化方法等技术方案目前已应用于马钢港务原料总厂,相关技术可为马钢节省成本100万元/年,研究成果提名工信部“2021年人工智能产业创新任务揭榜挂帅”项目。
学生培养:
所指导的本科生、研究生成果丰硕:指导的本科生获得院优秀毕业论文,获南洋理工大学全额奖学金博士录取;指导研究生获教育部国家奖学金、江苏省三好学生、校优秀毕业生、华为杯数学建模竞赛一等奖;出版江苏省十二五规划教材1部(清华大学出版社)并获得南航“十三五”优秀教材二等奖(2021)。作为负责人主持大学生“企业项目式”实习基地教学平台建设(2021),获批南航-航天706所实习基地;指导研究生团队获得《中国高校计算机大赛第九届网络技术挑战赛全国总决赛二等奖》(2024年9月)。
技术标准:
1、主持中国通信标准化协会(CCSA)行业标准“基于NFV平台的内生动态防御技术架构”(TC8WG4)(已报批)
2、参与IEEE标准:IEEE Computer Society/Cybersecurity and Privacy Standards Committee/Software Supply Chain Security(C/CPSC/SSCS-WG)-P3390
3、参与IEEE标准:IEEE Computer Society/Cybersecurity and Privacy Standards Committee/System & Software Runtime Security(C/CPSC/S2RS)-P3389
主持项目(部分):
1、2022国家重点研发计划(多模态网络1.7专项,项目总额3800万):超低时延高可靠的多接入精益网络LeaNet共生演进架构及关键技术(课题1:精益网络架构体系与核心机理研究,共同负责人,国拨441万)
2、国家自然科学基金面上项目(2021),71万
3、国家自然科学基金青年项目(2018),31万
4、江苏省自然科学基金青年项目(2016),20万
5、科技部外专项目(2020),30万
6、中国计算机学会-腾讯犀牛鸟基金(2016,全世界155项申请中只有14人获得)
7、国家博士后特助(2019),18万
8、江苏省政策引导类科技计划(2021),10万
9、国家博士后科研基金面上项目(2017)
10、江苏省博士后A类资助(2017年南航唯一A类)
11、马鞍山钢铁合作项目(2021),59万
12、中国电信移动互联网系统与应用安全国家工程实验室2021年专项(2021),15万
13、中兴通讯2022年“移动网络和移动多媒体技术国家重点实验室”合作基金,30万
14、国网南瑞信通合作课题(2022),30.8万
15、中兴通讯产学研基金项目(2024),44万
论文列表(部分): Note: *Corresponding author, #My graduate student
[1] R. Wang*, R. Wu#, L. Liu, C. Yi, K. Zhu, P. Wang and D. Niyato, “Joint Energy and Computation Workload Management for Geo-distributed Data Centers”, IEEE Transactions on Green Communications and Networking (IF: 5.3), accepted for publication (DOI: 10.1109/TGCN.2025.3559505).
[2] Y. Zhang#, R. Wang*, J. Hao, Q. Wu, Z. Xiong and D. Niyato, “Joint Deployment and Migration of Service Function Chains for Mobility-Aware Services in an Edge-Cloud Environment”, IEEE Transactions on Cognitive Communications and Networking (IF: 7.4), accepted for publication (DOI: 10.1109/TCCN.2025.3557966).
[3] R. Wang*, L. Cai#, Q. Wu and D. Niyato, “Service Function Chain Deployment with Intrinsic Dynamic Defense Capability”, IEEE Transactions on Mobile Computing (CCF-A, IF: 7.9), accepted for publication (DOI: 10.1109/TMC.2025.3532210).
[4] G. Cai#, Q. Wu*, R. Wang*, L. Zhi, Xiaoming Fu and Hongke Zhang, “Enabling Ultralow-Latency Services with Ubiquitous Mobility by Means of a Compact Network Architecture”, IEEE Transactions on Mobile Computing (CCF-A, IF: 7.9), accepted for publication (DOI: 10.1109/TMC.2025.3526971).
[5] R. Wu#, R. Wang*, J. Hao, Q. Wu, P. Wang and D. Niyato, “Multiobjective Vehicle Routing Optimization with Time Windows: A Hybrid Approach Using Deep Reinforcement Learning and NSGA-II”, IEEE Transactions on Intelligent Transportation Systems (CCF-B, IF: 7.9), accepted for publication (DOI: 10.1109/TITS.2024.3515997).
[6] Y. Zhang#, R. Wang*, J. Hao, Q. Wu, Y. Teng, P. Wang and D. Niyato, “Service Function Chain Deployment with VNF-Dependent Software Migration in Multi-domain Networks”, IEEE Transactions on Mobile Computing (CCF-A, IF: 7.9), accepted for publication (DOI: 10.1109/TMC.2024.3514173).
[7] R. Wang*, X. Yu#, Q. Wu, C. Yi, P. Wang and D. Niyato, “Efficient Deployment of Partial Parallelized Service Function Chains in CPU+DPU-Based Heterogeneous NFV Platforms”, IEEE Transactions on Mobile Computing (CCF-A, IF: 7.9), Volume: 23, Issue: 10, October 2024.
[8] S. Li#, Q. Wu*, R. Wang* and R. Lu, “Towards Networking and Routing in 6G Satellite-Terrestrial Integrated Networks: Current Issues and a Potential Solution”, IEEE Communications Magazine, accepted for publication, 2024.
[9] S. Li#, Q. Wu* and R. Wang*, “Dynamic Discrete Topology Design and Routing for Satellite-Terrestrial Integrated Networks”, IEEE/ACM Transactions on Networking (CCF-A), accepted for publication (DOI: 10.1109/TNET.2024.3397613).
[10] G. Gao, Y. Dong, R. Wang*, X. Zhou and Z. Yan, “EdgeVision: Towards Collaborative Video Analytics on Distributed Edges for Performance Maximization”, IEEE Transactions on Multimedia (IF: 7.3), Volume: 26, 2024.
[11] X. Yu#, R. Wang*, J. Hao, Q. Wu, P. Wang and D. Niyato, “Priority-Aware Deployment of Autoscaling Service Function Chains based on Deep Reinforcement Learning”, IEEE Transactions on Cognitive Communications and Networking (IF: 8.6), Vol.10 Issue 3, pp. 1050-1062, Jun. 2024.
[12] R. Wu#, R. Wang*, J. Hao, Q. Wu and P. Wang, “Multiobjective Multihydropower Reservoir Operation Optimization with Transformer-based Deep Reinforcement Learning”, Journal of Hydrology (IF: 6.4), Volume 632, March 2024.
[13] R. Wang*, H. Wang#, K. Zhu, C. Yi, P. Wang and D. Niyato, "Mobile Charging Services for Internet of Electric Vehicles: Concepts, Scenarios and Challenges", IEEE Vehicular Technology Magzine (IF: 8.1), Vol. 18, Sep. 2023.
[14] Q. Wu, R. Wang*, X. Duan, C. Yi and P. Wang, "A Lean Networking Framework (LeaNet): Potential Technical Space and Approaches for Latency Sensitive Mobile Services," in IEEE Network (IF: 9.3), April. 2023.
[15] R. Wang, Tingli Xu#, Hu Xu, Guanyu Gao*, Yang Zhang, Kun Zhu, Robust multi-objective load dispatch in microgrid involving unstable renewable generation, International Journal of Electrical Power & Energy Systems (IF: 5.2), Volume 148, 2023, pp. 108991.
[16] R. Wang, Jiang-tian Nie, Yang Zhang, Kun Zhu, Clustering-based Demand Response for Intelligent Energy Management in 6G-enabled Smart Grids, Computer Science, 2022, 49(6): 44-54.
[17] Q. Wu, R. Wang*, X. Yan, C. Wu and R. Lu, “Intrinsic security: a robust framework for cloud-native network slicing via a proactive defense paradigm”, IEEE Wireless Communications (IF: 12.9), vol. 29, no. 2, pp. 146-153, April 2022.
[18] L. Liu, R. Wang* and Gaoxi Xiao, “On the Throughput Optimization for Message Dissemination in Opportunistic Underwater Sensor Networks”, Computer Networks (CCF-B, IF: 5.6), Volume 169, pp. 1-16, 14 March 2020.
[19] R. Wang, G. Xiao and P. Wang, “Hybrid Centralized-Decentralized (HCD) Charging Control of Electric Vehicles,” IEEE Transactions on Vehicular Technology (IEEE TVT, IF: 6.8), Vol. 66, Issue 8, 2017, pp. 6728 – 6741.
[20] R. Wang, P. Wang and G. Xiao, “Two-stage Mechanism for Massive Electric Vehicle Charging Involving Renewable Energy,” IEEE Transactions on Vehicular Technology (IEEE TVT, IF: 6.8), Vol. 65, No. 6, 2016, pp. 4159-4171.
[21] R. Wang, P. Wang and G. Xiao, “A Robust Optimization Approach for Energy Generation Scheduling in Microgrids”, Energy Conversion and Management (ECM, IF: 10.4), Vol. 106, 2015, pp. 597–607.
[22] R. Wang, P. Wang, G. Xiao and S. Gong, “Power Demand and Supply Management in Microgrids with Uncertainties of Renewable Energies”, International Journal of Electrical Power and Energy Systems (IJEPES, IF: 5.2), Vol. 63, 2014, pp. 260–269.
[23] Y. Cao, O. Kaiwartya, R. Wang*, T. Jiang, Y. Cao, N. Aslam and G. Sexton, “Towards Efficient, Scalable and Coordinated On-the-move EV Charging Management”, IEEE Wireless Communications (IF: 12.9), Vol. 24, Issue. 2, Apr. 2017, pp 66-73.
[24] C. Yi, J. Cai, K. Zhu and R. Wang, “A Queueing Game Based Management Framework for Fog Computing with Strategic Computing Speed Control”, IEEE Transactions on Mobile Computing (CCF-A, IF: 7.9), 2021.
[25] J. Ji, K. Zhu, D. Niyato and R. Wang, “Joint Trajectory Design and Resource Allocation for Secure Transmission in Cache-enabled UAV-relaying Networks with D2D Communications”, IEEE Internet of Things Journal (IF: 10.6), vol. 8, no. 3, Feb 2021, pp. 1557-1571.
[26] J. Ji, K. Zhu, D. Niyato and R. Wang, “Probabilistic Cache Placement in UAV-assisted Networks with D2D Connections: Performance Analysis and Trajectory Optimization”, IEEE Transactions on Communications (TCom, IF: 8.3), vol. 68, no. 10, Oct. 2020, pp. 6331-6345.
[27] C. Dai, K. Zhu, R. Wang and B. Chen, “Contextual Multi-Armed Bandit for Cache-Aware Decoupled Multiple Association in UDNs: A Deep Learning Approach”, IEEE Transactions on Cognitive Communications and Networking (TCCN, IF: 8.6), vol. 5, no. 4, Dec. 2019, pp. 1046-1059.
[28] L. Liu, R. Wang, and J. Wu, “A Time-inhonogeneous Markov Chain and its Distributed Solutions for Message Dissemination in OUSNs”, Journal of Parallel and Distributed Computing (Elsevier, CCF-B, IF: 3.8), Volume 130, August 2019, pp. 179-192.
[29] L. Liu, R. Wang and J. Wu, “On the adaptive data forwarding in opportunistic underwater sensor networks using GPS-free mobile nodes”, Journal of Parallel and Distributed Computing (Elsevier, CCF-B, IF: 3.8), Vol. 122, Dec. 2018, pp. 131-144.
[30] L. Liu, P. Wang and R. Wang, “Propagation Control of Data Forwarding in Opportunistic Underwater Sensor Networks”, Computer Networks (Elsevier, CCF-B, IF: 5.6), Vol. 114, 2017, pp. 80-94.
[31] R. Wang, G. Xiao, P. Wang, G. Li, Y. Cao, J. Hao and K. Zhu, “Energy Generation Scheduling in Microgrids Involving Temporal-Correlated Renewable Energy”, 2017 IEEE Global Communications Conference (Globecom), Singapore, 3-9 Dec. 2017.
[32] R. Wang, P. Wang and G. Xiao, “Two-stage Mechanism Design for Electric Vehicle Charging Involving Renewable Energy”, 2014 International Conference on Connected Vehicles and Expo (ICCVE), Vienna, Austria, 3-7 Nov. 2014.
[33] R. Wang, Y. Li, P. Wang and D. Niyato, “Design of a V2G aggregator to optimize PHEV charging and frequency regulation control”, IEEE SmartGridComm, Vancouver, Canada, 21-24 Oct. 2013.
[34] A. Ji#, R. Wang*, K. Zhu, Z. Xiong and D. Niyato, “Peer Effect-based Demand Response in Smart Grid: A Game Theoretical Approach”, 2020 IEEE Global Communications Conference (Globecom), 8-10 Dec. 2020, Taipei, Taiwan, China.
[35] B. Dai#, R. Wang*, K. Zhu, J. Hao and P. Wang, “A Demand Response Scheme in Smart Grid with Clustering of Residential Customers”, 2019 SmartGridComm, 21-23 October 2019, Beijing, China.
[36] Y. Lu#, R. Wang*, P. Wang, Y. Cao, J. Hao and K. Zhu, Energy-Efficient Task Scheduling for Data Centers with Unstable Renewable Energy: A Robust Optimization Approach, 2018 IEEE Greencom, Jul. 30-Aug. 3, 2018, Halifax, Canada.
[37] C. Wu#, R. Wang*, P. Wang, Y. Cao, L. Liu, K. Zhu and B. Chen, “On the Profit Maximization of Spectrum Investment under Uncertainties in Cognitive Radio Networks”, 2018 IEEE International Conference on Communications (ICC), 20-24 May 2018, Kansas City, MO, USA.
[38] H. Wang#, R. Wang*, H. Xu, K. Zhu, C. Yi, D. Niyato, "Multi-objective Mobile Charging Scheduling on the Internet of Electric Vehicles: a DRL Approach", 2021 IEEE Global Communications Conference (Globecom), accepted for publication.
[39] W. Zhang#, R. Wang*, C. Yi, K. Zhu: Joint Optimization of Computation Task Allocation and Mobile Charging Scheduling in Parked-Vehicle-Assisted Edge Computing Networks. WASA (3) 2022: 406-418
[40] Z. Ma#, R. Wang*, C. Yi, K. Zhu: Optimal Deployment and Scheduling of a Mobile Charging Station in the Internet of Electric Vehicles. WASA (1) 2022: 627-639
[41] Y. Zhang#, R. Wang*, Q. Wu, J. Hao and Z. Xiong, "Mobility-Aware Service Function Chain Deployment with Migration in NFV-based Edge-Cloud", WiOpt 2023, Singpoare, Aug. 24-27, 2023.
[42] T. Xu#, R. Wang* and J. Hao, "Deep Reinforcement Learning-based Multi-Objective Optimization for Mobile Charging Services in Internet of Electric Vehicles", ACM MobiArch 2023 (Workshop of MobiCom), 2-6 Oct. 2023, Madrid Spain, Awarded as the Best Paper!!!
[43] J. Zhao#, R. Wang*, Q. Wu, J. Hao and Z. Xiong, "Evolutionary Reinforcement Learning for Multi-objective SFC Deployment", 2024 IEEE MASS, Seoul, Republic of Korea, 2024, pp. 212-218.
专利(部分):
[1] 王然、李仔振、易畅言、朱琨,一种可再生能源供电的数据中心资源优化调度方法,202110041643.0,2021年(已授权)。
[2] 王然、姬昂、易畅言、朱琨,一种智能电网中基于同伴效应的需求响应方法,202010818408.5,2020年(已授权)。
[3] 王然、戴碧坚、朱琨,一种智能电网中基于住宅用户聚类的需求响应方法,2019106993190,2019年(已授权)。
[4] 王然、陆艺雯、朱琨,一种地理分布式数据中心系统及其调度方法,201811085171.3,2018年(已授权)。
[5] 王然、吴成庆、陈兵,认知无线电网络中面向频谱需求不确定的频谱投资策略,201711220424.9,2017年(已授权)。
[6] 王然、陆艺雯、陈兵,微电网中涉及时间相关可再生能源的发电调度技术,201711350549.3,2017年。
[7] 王然、陆艺雯、陈兵,基于鲁棒优化的绿色数据中心节能任务调度策略,201711201244.6,2017年(已授权)。
[8] 王然,一种充电调度方法、电子设备及存储介质,201710357318.9,2017年(已授权)。
[9] 王然、王晖、徐虎、易畅言、朱琨,一种基于深度强化学习的移动充电车服务调度方法,202111388007.1,2021(已授权)。
[10] 王然、余雪,基于CPU+DPU平台的多目标服务功能链的高效并行化和部署方法,202211352904.1,2022(已授权)。
[11] 王然、余雪、吴强、易畅言,一种基于深度强化学习的多目标服务功能链的优先级感知部署方法,202211292097.9,2022(已授权)。
[12] 王然、张宇涵、吴强,一种移动感知的多目标业务功能链部署和迁移方法,2022115082598,2022(已授权)。
[13] 王然、余雪、吴强,一种基于内生动态防御架构的多目标服务功能链部署方法,202310223837.1,2023,(已授权)。
[14] 王然、吴日新、郝洁、吴强,基于Transformer改进深度强化学习的多目标多水库调度优化方法,202310640998.0(已授权);
[15] 王然、徐婷立、吴强、郝洁,一种基于深度强化学习的移动充电服务编排管理方法,202311203713.3;
[16] 王然、张怡、吴强、郝洁、蔡贵良,一种多接入边缘计算场景下面向MEC业务的服务迁移方法,202311387728.X;
[17] 王然、吴日新、吴强、郝洁,基于Hypervolume深度强化学习的多目标旅行商问题求解方法,202311518191.6;
[18] 王然、吴强、郝洁、余雪,EFFICIENT PARALLELIZATION AND DEPLOYMENT METHOD OF MULTI-OBJECTIVE SERVICE FUNCTION CHAIN BASED ON CPU + DPU PLATFORM,US 11,936,758B1(美国专利、已授权);
[19] 王然、马振先、易畅言,一种面向车辆互联网络中电车的移动充电调度方法,202210744524.6(已授权);
[20] 王然、赵佳亮、吴强、郝洁,基于深度强化学习和遗传算法的多目标SFC 部署方法,2024100480271;
[21] 王然、谢声波、吴强、郝洁,面向业务混合部署的云计算系统中组件关键度评估方法,202410085339X;
[22] 王然、谢声波、吴强、郝洁,基于Transformer架构云系统冗余分配问题的求解方法,2024012400970550;
[23] 王然、吴强、朱旗、郝洁、余雪,ENDOGENOUS DYNAMIC DEFENSE ARCHITECTURE-BASED MULTI-OBJECTIVE SERVICE FUNCTION CHAIN DEPLOYMENT METHOD,US 12,003,528B1(美国专利、已授权);
[24] 王然、杨成峰、吴强、郝洁,基于数据模型双驱动的数据中心网络拥塞控制方法,202510173468.9;
[25] 王然、张宇涵、吴强、郝洁,一种多域网络中基于VNF依赖组件迁移的SFC部署方法. 2025100677941
[26] 王然、张宇涵、吴强、郝洁,. 一种基于VNF依赖组件的SFC部署和迁移方法. 2025100676686.
专著与教材:
[1] Ran Wang, Ping Wang and Gaoxi Xiao, “Intelligent Microgrid Management and EV Control under Uncertainties in Smart Grid”, Springer, eBook ISBN 978-981-10-4250-8, Hardcover ISBN 978-981-10-4249-2, Jan. 2018.
[2] 陈兵、钱红燕、杜庆伟、赵彦超、郝洁、王然,《网络安全》,清华大学出版社,撰写第七章 “物联网安全技术”,2017年(获得2021南航优秀教材二等奖)。
[3] Linfeng Liu, Ran Wang and Jiagao Wu, "Message Dissemination Techniques in Opportunistic Underwater Sensor Networks", Springer, eBook ISBN 978-981-33-4381-8, Hardcover ISBN 978-981-33-4380-1, Dec. 2021.
[4] K. Zhu, Ran Wang, and X. Zhai, "Robust games for power control in multi-tier cellular networks," book chapter in Encyclopedia of Wireless Networks, Cambridge Springer, 2018.
研究团队:
博士生:张宇涵、李超君
硕士生:赵佳亮、张怡、谢声波、吴日新、杨成峰、刘青俊、蔡伦丹、李阳、田诗琪、吴婷婷、李政轩、司马成
已毕业研究生:陆艺雯、吴成庆、戴碧坚、姬昂、王晖、李仔振、马振先、章文秋、吴贺、余雪、张宇涵(读博)、徐婷立
2011.8 -- 2016.4
南洋理工大学
 计算机科学与工程
 博士研究生毕业
 工学博士学位
2007.8 -- 2011.7
哈尔滨工业大学
 电子信息工程
 大学本科毕业
 工学学士学位
2004.8 -- 2007.6
黑龙江省实验中学
 理科
 普通高中毕业
2019.6 -- 至今
南京航空航天大学 副教授
2016.4 -- 2019.6
南京航空航天大学 讲师
能源互联网
人工智能应用
精益网络(LeaNet)架构及关键技术