• 其他栏目

    李舜酩

    • 教授
    • 毕业院校:西安交通大学
    • 学历:西安交通大学
    • 学位:工学博士学位
    • 所在单位:能源与动力学院
    • 办公地点:明故宫校区 A10楼 518房间
    • 联系方式:13605199671 smli@nuaa.edu.cn
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    A novel supervised sparse feature extraction method and its application on rotating machine fault diagnosis

    点击次数:

    所属单位:能源与动力学院

    发表刊物:NEUROCOMPUTING

    关键字:Intelligent fault diagnosis Parameterized sparse label matrix Sparse filtering Supervised feature extraction Supervised regularized sparse filtering

    摘要:Intelligent fault diagnosis methods are promising in dealing with mechanical big data owing to its efficiency in extracting discriminative features automatically. Sparse filtering (SF) is a simple and effective unsupervised feature extraction method aiming at optimizing the feature sparsity. However, the sparsity realized by SF is irregular and the features are unnecessarily discriminative for further classification. Hence, a simple and fast supervised feature extraction algorithm called supervised regularized sparse filtering (SRSF) is proposed, which explores a new way to optimize for sparsity. The supervised feature extraction is realized through fusing a novel parameterized sparse label matrix (PSLM) into the feature matrix to regular the sparsity. Meanwhile, a new objective function is developed together with it, and they work together to quicken the network convergence. In addition, SRSF can find out the specific frequencies from the learned weight matrix for each health condition innovatively, which connects the proposed method with traditional signal processing techniques. Furthermore, based on SRSF, a three-stage fault diagnosis network is developed. Experiments on a bearing case and a gearbox case are conducted separately to verify its effectiveness, and comparisons with the state of the art confirm its superiority. (C) 2018 Elsevier B.V. All rights reserved.

    ISSN号:0925-2312

    是否译文:

    发表时间:2018-12-03

    合写作者:Qian, Weiwei,Wang, Jinrui,Wu, Qijun

    通讯作者:李舜酩