![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
软件工程 -- 【招收硕士研究生】 -- 人工智能学院
电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
学历:南京航空航天大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
A new dual weights optimization incremental learning algorithm for time series forecasting
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:APPLIED INTELLIGENCE
关键字:Time series forecasting (TSF) Incremental learning (IL) Extreme learning machine (ELM) Incremental extreme learning machine (IELM) Dual weights optimization incremental learning (w(2)IL) algorithm
摘要:In this paper, a novel dual weights optimization Incremental Learning (w(2)IL) algorithm is developed to solve Time Series Forecasting (TSF) problem. The w(2)IL algorithm utilizes IELM as the base learner, while its incremental learning scheme is implemented by employing a newly designed Adaptively Weighted Predictors Aggregation (AdaWPA) subalgorithm to aggregate the existing base predictors with the ones generated upon the new data. There exist two major innovations within w(2)IL, namely, the well-designed Adaptive Samples Weights Initialization (AdaSWI) and AdaWPA subalgorithms. The AdaSWI subalgorithm initializes the samples' weights adaptively based on the generated base models' prediction errors, and fine-tunes the samples' weights based on the distances from the samples to the clustering centers of base models' training datasets, achieving more appropriate samples weights initialization. While the AdaWPA algorithm adaptively adjusts base predictors' weights based on prediction instances and integrates the base predictors employing these adjusted weights. Besides, the AdaWPA subalgorithm makes use of Fuzzy C-Means (FCM) clustering algorithm for distance measurement, further reducing computational complexity and storage space of the algorithm. The w(2)IL algorithm constructed in this way possesses significantly superior prediction performance compared with other existing good algorithms, which has been verified through experimental results on six benchmark real-world TSF datasets.
ISSN号:0924-669X
是否译文:否
发表时间:2019-10-01
合写作者:李锦华
通讯作者:戴群