![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
网络空间安全 -- 【招收硕士研究生】 -- 计算机科学与技术学院
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 人工智能学院
软件工程 -- 【招收硕士研究生】 -- 人工智能学院
电子信息 -- 【招收博士、硕士研究生】 -- 人工智能学院
学历:南京航空航天大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
A novel double incremental learning algorithm for time series prediction
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:NEURAL COMPUTING & APPLICATIONS
关键字:Time series prediction (TSP) Incremental SVM Incremental learning Double incremental learning (DIL) algorithm
摘要:Based on support vector machine (SVM), incremental SVM was proposed, which has a strong ability to deal with various classification and regression problems. Incremental SVM and incremental learning paradigm are good at handling streaming data, and consequently, they are well suited for solving time series prediction (TSP) problems. In this paper, incremental learning paradigm is combined with incremental SVM, establishing a novel algorithm for TSP, which is the reason why the proposed algorithm is termed double incremental learning (DIL) algorithm. In DIL algorithm, incremental SVM is utilized as the base learner, while incremental learning is implemented by combining the existing base models with the ones generated on the new data. A novel weight update rule is proposed in DIL algorithm, being used to update the weights of the samples in each iteration. Furthermore, a classical method of integrating base models is employed in DIL. Benefited from the advantages of both incremental SVM and incremental learning, the DIL algorithm achieves desirable prediction effect for TSP. Experimental results on six benchmark TSP datasets verify that DIL possesses preferable predictive performance compared with other existing excellent algorithms.
ISSN号:0941-0643
是否译文:否
发表时间:2019-10-01
合写作者:李锦华,叶锐
通讯作者:戴群