扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zzz123/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    应用统计 -- 【招收硕士研究生】 -- 数学学院
    数学 -- 【招收博士、硕士研究生】 -- 数学学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
A New Type of Finite Volume WENO Schemes for Hyperbolic Conservation Laws

点击次数:
所属单位:理学院
发表刊物:JOURNAL OF SCIENTIFIC COMPUTING
关键字:Fifth order WENO scheme Finite volume Unequal size spatial stencil Engineering application
摘要:A new type of finite difference weighted essentially non-oscillatory (WENO) schemes for hyperbolic conservation laws was designed in Zhu and Qiu (J Comput Phys 318:110-121, 2016), in this continuing paper, we extend such methods to finite volume version in multi-dimensions. There are two major advantages of the new WENO schemes superior to the classical finite volume WENO schemes (Shu, in: Quarteroni (ed) Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, Lecture Notes in Mathematics, CIME subseries, Springer, Berlin, 1998), the first is the associated linear weights can be any positive numbers with only requirement that their summation equals one, and the second is their simplicity and easy extension to multi-dimensions in engineering applications. The new WENO reconstruction is a convex combination of a fourth degree polynomial with two linear polynomials defined on unequal size spatial stencils in a traditional WENO fashion. These new fifth order WENO schemes use the same number of cell average information as the classical fifth order WENO schemes Shu (1998), could get less absolute numerical errors than the classical same order WENO schemes, and compress nonphysical oscillations nearby strong shocks or contact discontinuities. Some benchmark tests are performed to illustrate the capability of these schemes.
ISSN号:0885-7474
是否译文:否
发表时间:2017-12-01
合写作者:Qiu, Jianxian
通讯作者:Qiu, Jianxian,朱

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)