扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zzz123/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    应用统计 -- 【招收硕士研究生】 -- 数学学院
    数学 -- 【招收博士、硕士研究生】 -- 数学学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
NEW FINITE VOLUME WEIGHTED ESSENTIALLY NONOSCILLATORY SCHEMES ON TRIANGULAR MESHES

点击次数:
所属单位:理学院
发表刊物:SIAM JOURNAL ON SCIENTIFIC COMPUTING
关键字:weighted essentially nonoscillatory scheme triangular mesh finite volume scheme high order accuracy steady state problem
摘要:In this paper, we design a new type of high order finite volume weighted essentially nonoscillatory (WENO) schemes to solve hyperbolic conservation laws on triangular meshes. The main advantages of these schemes are their compactness and robustness and that they could maintain a good convergence property for some steady state problems. Compared with the classical finite volume WENO schemes [C. Hu and C.-W. Shu, T. Comput. Phys., 150 (1999), pp. 97-127], the optimal linear weights are independent of the topological structure of the triangular meshes and can be any positive numbers with the one requirement that their summation is one. This is the first time any high order accuracy with the usage of only five unequal sized stencils in a spatial reconstruction methodology on triangular meshes has been obtained. Extensive numerical results are provided to illustrate the good performance of such new finite volume WENO schemes.
ISSN号:1064-8275
是否译文:否
发表时间:2018-01-01
合写作者:Qiu, Jianxian
通讯作者:Qiu, Jianxian,朱

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)