张之梁

个人信息Personal Information

教授 博士生导师

招生学科专业:
电气工程 -- 【招收博士、硕士研究生】 -- 自动化学院
能源动力 -- 【招收博士、硕士研究生】 -- 自动化学院

任职 : IEEE 高级会员

学历:加拿大皇后大学

学位:哲学博士学位

所在单位:自动化学院

联系方式:13301583525

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

SOC Estimation of Lithium-Ion Batteries With AEKF and Wavelet Transform Matrix

点击次数:

所属单位:自动化学院

发表刊物:IEEE TRANSACTIONS ON POWER ELECTRONICS

关键字:Signal denoising state of charge (SOC) wavelet transform matrix (WTM)

摘要:Due to harsh electromagnetic environment in electric vehicle (EV), the measured current and voltage signals can be seriously polluted, which results in an estimation error of state of charge (SOC). The proposed denoising approach based on wavelet transform matrix (WTM) can analyze and denoise the nonstationary current and voltage signals effectively. This approach reduces the computation burden and is convenient to be programed in microcontroller unit, which is suitable for EV real-time application. The steps of the approach are as follows: 1) decomposition of the current and voltage signals based on WTM; 2) denoising of the wavelet coefficients under the thresholding rule; and 3) reconstruction of the denoised current and voltage signals based on inverse WTM. A battery-management system prototype was built to verify the approach on a Li(NiCoMn)O-2 battery module with nominal capacity of 200 Ah and rated voltage of 3.6 V. SOC estimation error with the proposed denoising approach is limited within 1%. Compared to the maximum error of 2.5% using an adaptive extended Kalman filter without denoising, an estimation error reduction of 1.5% is achieved.

ISSN号:0885-8993

是否译文:

发表时间:2017-10-01

合写作者:程祥,Lu, Zhou-Yu,Gu, Dong-Jie

通讯作者:张之梁