教授 博士生导师
招生学科专业:
数学 -- 【招收博士、硕士研究生】 -- 数学学院
主要任职:中国数学学会生物数学专委会常务理事,江苏省生物数学会副理事长
性别:男
毕业院校:四川大学
学历:四川大学
学位:理学博士学位
所在单位:数学学院
联系方式:zhaohy@nuaa.edu.cn
电子邮箱:
最后更新时间:..
点击次数:
所属单位:理学院
发表刊物:JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS
关键字:Allee effect predator-prey model flip bifurcation Neimark-Sacker bifurcation codimension-two bifurcation Marotto's Chaos 92D25 39A30
摘要:In this paper, complex dynamics of the discrete predator-prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark-Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark-Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.
ISSN号:1023-6198
是否译文:否
发表时间:2017-01-01
合写作者:Wu, Daiyong
通讯作者:赵洪涌