扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 叶永强 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/yyq/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    电气工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    控制科学与工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
An improved binary differential evolution algorithm for optimizing PWM control laws of power inverters

点击次数:
所属单位:自动化学院
发表刊物:OPTIMIZATION AND ENGINEERING
关键字:Power inverters PWM control laws Differential evolution Parameterless mutation Adaptive crossover
摘要:Stochastic optimization methods inspired by biological evolution system have been widely employed to optimize PWM control laws of power inverters. But the existing approaches impose a serious computational burden and difficult parameter tuning issues. However, the differential evolution (DE) algorithm has the superiority of simple implementation and few parameters to tune. Thus, we propose an improved binary DE (IBDE) algorithm for optimizing PWM control laws of power inverters. The proposed algorithm focuses on the designs of the adaptive crossover and parameterless mutation strategies without imposing an additional computational burden. In numerical experiments, a single-phase full-bridge and two-level three-phase inverters are considered, and the optimal PWM control law is calculated to maximize the closeness of the controlled inductor current to sinusoidal reference current by using the proposed algorithm. Experimental results indicate that IBDE can obtain high quality output waveform that is a very good approximation to the sinusoidal reference waveform. Moreover, the spectrum analysis for the optimal PWM control law obtained by IBDE indicates that the lower odd-order harmonics are eliminated, while the existing peer algorithms cannot do well. We also carry out experiments on sensitivity analysis with respect to several important parameters.
ISSN号:1389-4420
是否译文:否
发表时间:2018-06-01
合写作者:Qian, Shuqu,Liu, Yanmin,Xu, Guofeng
通讯作者:叶永强

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)