![]() |
个人信息Personal Information
副教授
招生学科专业:
控制科学与工程 -- 【招收硕士研究生】 -- 自动化学院
电子信息 -- 【招收硕士研究生】 -- 自动化学院
毕业院校:东南大学
学历:东南大学
学位:工学博士学位
所在单位:自动化学院
办公地点:江宁校区自动化学院4号楼310房间
联系方式:025-52832301-3101
电子邮箱:
Study of the fault diagnosis method of control systems based on MCCSAPSO-SVM
点击次数:
所属单位:自动化学院
发表刊物:J. Comput.
摘要:In order to improve the accuracy of actuator fault diagnosis of control system, a new method based on Multi-swarm cooperative chaos simulated annealing particle swarm optimization-support vector machine (MCCSAPSO-SVM) is proposed in this paper. Firstly, the noise reduction and feature extraction for the output signal are taken by the joint noise reduction and improved empirical mode decomposition (EMD) method. Secondly, structure parameters of SVM are optimized by MCCSAPSO, which not only can effectively avoid the premature convergence of particle swarm, but also can overcome the misjudgment problem caused by single particle information exchange. This algorithm can accelerate the convergence velocity and improve the accuracy of traditional PSO. Thirdly, the use of the mixture kernel function (MKF) can guarantee the good generalization and learning ability of SVM. Finally, a partial binary tree SVM is constructed by using the training data. This structure transforms a complex multi-classification problem into a number of two classification problems, which reduces the computational complexity and improves the real-time performance of the diagnosis. The experimental results of quad-rotor semi-physical simulation platform verify the feasibility and effectiveness of the proposed method.
ISSN号:1991-1599
是否译文:否
发表时间:2017-10-01
合写作者:Guo, Ruicheng,Pan, Xu,刘剑慰
通讯作者:杨蒲