吴一全

个人信息Personal Information

教授

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:电子信息工程学院

联系方式:nuaaimage@163.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

利用改进CV模型分割煤矿井下早期火灾图像

点击次数:

所属单位:电子信息工程学院

发表刊物:中国矿业大学学报

关键字:矿井;早期火灾图像;图像分割;主动轮廓模型;区域拟合中心;最小绝对差;

摘要:针对传统主动轮廓模型难以实现煤矿井下早期火灾图像火焰区域精确提取的问题,提出了一种改进的Chan-Vese(CV)模型.在计算目标和背景全局区域拟合中心的基础上,利用曲线内外区域局部灰度统计直方图获取目标和背景局部区域拟合中心,并对全局和局部区域拟合中心赋予归一化的调节比例,以综合利用图像全局和局部信息;为了加速曲线运动到目标边缘,利用曲线内外区域像素灰度的最小绝对差来取代模型中原有的内外区域能量权重,以提高模型分割效率.结果表明:与CV模型、局部二值拟合模型(LBF)、全局和局部灰度拟合混合模型(LGIF)、引入自适应能量权重的CV模型(WCV)相比较,提出的模型能更加快速、精确地提取煤矿井下早期火灾图像中的火焰区域,在分割效果和分割效率方面均有明显优势.

ISSN号:1000-1964

是否译文:

发表时间:2018-03-15

合写作者:韩斌,倪康

通讯作者:吴一全