吴一全

个人信息Personal Information

教授

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:电子信息工程学院

联系方式:nuaaimage@163.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A novel active contour model based on median absolute deviation for remote sensing river image segmentation

点击次数:

所属单位:电子信息工程学院

发表刊物:COMPUTERS & ELECTRICAL ENGINEERING

关键字:Remote sensing river image Image segmentation Median absolute deviation Active contour model Region energy weights

摘要:Aiming at the problem of the inaccurate segmentation of remote sensing river images by existing active contour models (ACMs), a novel ACM based on median absolute deviation for remote sensing river image segmentation is presented. Firstly, the external energy constraint terms of the presented model are defined by the median absolute deviation instead of the within-cluster variance in the Chan-Vese (CV) model. Secondly, in order to accelerate the evolution of the model, the fusion information of within-cluster variances and median absolute deviations of pixel grayscale values inside the object and background regions is utilized as the region energy weights. The corresponding experiments are carried out on a large number of remote sensing river images and the results illustrate that the presented model outperforms the existing ACMs, which can segment the remote sensing river images much more accurately and efficiently. (C) 2017 Elsevier Ltd. All rights reserved.

ISSN号:0045-7906

是否译文:

发表时间:2017-08-01

合写作者:韩斌,宋昱

通讯作者:吴一全