文浩

个人信息:Personal Information

教授 博士生导师 硕士生导师

性别:男

毕业院校:南京航空航天大学

学历:博士研究生毕业

学位:工学博士学位

在职信息:在职

所在单位:航空学院

学科:一般力学与力学基础 工程力学

办公地点:A18-610

联系方式:wenhao@nuaa.edu.cn

其他联系方式Other Contact Information

通讯/办公地址 :

办公室电话 :

邮箱 :

扫描关注

个人简介:Personal Profile

2009年获南京航空航天大学大学一般力学专业工学博士学位,2011年获全国优秀博士学位论文奖。现任全国非线性振动专业委员会委员、复杂装备MBSE联盟数字孪生及使能技术委员会副主任委员、江苏省力学学会一般力学专业委员会委员和美国航空航天学会高级会员,曾任南京航空航天大学振动工程研究所长。目前主要从事大型空间结构、空间机器人及无人飞行器等领域研究。已主持国家自然科学基金面上项目等各类科研项目20项,参与国家自然科学基金重大项目和重点项目、民用航天和载人航天预研项目等课题研究。在Journal of Guidance, Control, and DynamicsNonlinear DynamicsAIAA Journal等权威期刊发表学术论文70余篇,其中SCI收录论文40余篇,获发明专利授权8项。

主要研究方向:

航天结构的在轨组装和重构动力学与控制

Dynamics and Control of Autonomous Assembly of a Space Structure on Orbit


在轨组装是一种在太空进行结构装配的技术,其独特的优势在于:一是相比于在轨展开技术,能够构建尺度更大的巨型空间结构,例如,大口径望远镜、大口径天线、巨型太阳能阵列、太阳光子推进帆等;二是便于根据任务变化进行结构重构;三是易于对故障组件进行替换。在轨组装可分为“有人参与”和“自主”组装两种类型。有人参与的在轨组装主要通过地面远程控制或航天员在轨操作完成。自主组装则是由专门的空间机器人自动完成部件的取运和装配,如图1所示;或是利用部件间的自主交会、对接实现系统组装,如图2所示。研究团队针对在轨自主组装动力学、控制及地面实验开展了深入研究。例如,针对超大型空间望远镜在轨组装任务涉及的模块化结构设计、无接触视觉测量以及机械臂控制等关键问题,通过地面模拟实验平台对自主组装策略进行了验证,如图3所示。再如,针对追踪航天器与自旋目标航天器的交会对接任务,基于势函数理论、前馈控制理论以及比例-微分控制理论,提出了分阶段控制策略,并通过地面实验系统进行实验验证,如图4所示。此外,针对飞行机器人携带柔性空间结构模块在轨自主组装任务,提出了多种控制策略:将飞行机器人及其携带的空间结构模块简化为二维刚体+柔性梁系统,提出将姿态一致性控制和避撞控制相结合的交会对接控制策略;又进一步提出了基于人工势能的交会对接控制策略,通过图5所示的地面物理仿真实验,验证了其有效性。

On-orbit assembly is a kind of technology for structural assembly in space. This technology has several unique advantages. Compared with the on-orbit deployment technology, the much more large space structure can be constructed, such as, the large aperture telescope, the large aperture antenna, the giant solar array, and the solar photon propulsion sail. In addition, the structural reconfiguration according to the mission requirements and the replacement for the faulty components become available. The on-orbit assembly technology can be divided into two categories, namely, human-assisted assembly and autonomous assembly. The human-assisted assembly is mainly accomplished through the remote control on the ground or the on-orbit operations by the astronauts. Autonomous assembly can be further separated into two types, one is the space robots automatically complete the capturing, transporting and assembling the structural modules, as shown in Figure 1, the other is utilizing the autonomous Rendezvous and Docking (RVD) among the structural components to fulfill the assembly task, as shown in Figure 2. Our research group has been committed to on-orbit autonomous assembly research with focus on dynamics, control, and ground experimental aspects. For the on-orbit assembly mission of the future extremely large space telescope, the key issues related to the modular structure design, the non-contact visual measurement, and the robotic arm control were studied, and the autonomous assembly strategy was further verified through ground-based experiment, as shown in Figure 3. For the planar RVD mission of a chaser spacecraft with a spinning target spacecraft, a multi-stage control strategy based on the artificial potential function method, the feedforward and proportional derivative control theory was proposed, and the effectiveness of the controller was validated by the ground experimental system, as shown in Figure 4. A variety of control strategies have been proposed for on-orbit autonomous assembly of flexible space structural modules carried by free-flying robots. For example, the free-flying robots with flexible modules were simplified as the two-dimensional hub-beam models, then an RVD control strategy which combines a state consensus controller and a collision avoidance controller was presented. In addition, an artificial potential function-based RVD controller was further proposed, and its effectiveness was verified through the ground experiment shown in Figure 5.


图1 空间机器人完成在轨自主组装示意图

Figure 1 The space robot-based on-orbit autonomous assembly


undefined

图2 利用部件间自主交会、对接完成在轨自主组装示意图

Figure2 The autonomous RVD-based on-orbit autonomous assembly



图3 固定基座机械臂进行结构模块组装的物理仿真实验过程

Figure 3 Autonomous assembly of structural modules using fixed-base robot



图4 两个航天器进行自主交会、对接的物理仿真实验过程

Figure 4 Experimental research on RVD mission of two spacecraft simulators



图5 两个航天器携带柔性结构模块进行自主交会的物理仿真实验过程

Figure 5 Experimental research on RVD mission of two spacecraft simulators carrying flexible structural modules



绳系卫星系统的动力学与控制

Dynamics and Control of Tethered Satellite Systems


绳系卫星系统意指借助柔性系绳将两个或多个人造卫星连在一起飞行的组合体。这种系绳通常由高强度纤维或导电材料制成,长度可达几十公里。特别地,具有导电特性的空间系绳(通常称电动力系绳)在绕地飞行时会切割地磁场,并产生很大的动生电动势。电流在流过系绳时会与地磁场相互作用而产生Lorenz力,特别适合用于改变航天器轨道,或是太空垃圾的降轨及清理,如图6所示。基于电动力绳的离轨技术具有基本无需燃料、质量小、简单易用和低成本的优点,在众多空间碎片离轨技术中具有独特优势和经济价值。空间系绳的另一重要应用是通过系绳将多个卫星相连构成协同工作的绳系编队飞行系统,可用于对地观测、深空探测等科学任务,具有广阔的应用前景,如图7所示。基于合成孔径技术,将子孔径(光学、微波等观测器)安装在由系绳相连的编队卫星上构造超大孔径干涉仪,实现对目标的高分辨率成像。并且通过系绳卷绕实现孔径改变、队形保持,可大幅降低系统燃料消耗,提高在轨服务寿命。近二十年里,研究团队针对绳系航天器动力学、控制及实验问题开展了深入研究。图8所示是南京航空航天大学机械结构力学及控制国家重点实验室研制的绳系航天器地面实验系统。

Space tethers are long cables, made of long strands of high-strength fibers or conducting wires (up to tens of kilometers) used to connect two or more end-bodies in the space environment. Many applications proposed for space tethers can be encapsulated under the concept of Tethered Satellite System (or TSS for short), namely, two or more satellites (spacecrafts) connected by space tethers. In particular, a long conductive tether, usually referred to as electrodynamic tether, is able to generate a large electro-motive force along the length of the tether when it is orbiting around a planet with a magnetic field. The electric current flowing in the electrodynamic tether can interact with the magnetic field to generate Lorenz force, which can be applied to changing the orbits of spacecraft and to deorbiting and clearing space debris, as shown in Figure 6. Due to the advantages of no propellant, small mass, easiness in application and low cost, the deorbiting technology based on the electrodynamic tether has been identified as an appealing technology among various deorbiting technologies. Tethered formation flying is another promising application of space tether technology, that is, a cluster of tether-connected satellites is coordinated to perform various advanced missions, for example, such as earth observation and deep space exploration, as shown in Figure 7. Based on a synthetic aperture method, the sub-aperture (optical, microwave and other collectors) can be installed on the tethered satellites to construct an interferometer of a very large aperture, which can achieve the imaging for targets with a high resolution. Furthermore, the baseline change and maintenance of the formation configuration can be realized through the deployment and retrieval of tethers, which greatly benefits the increase of system service life and the reduction of fuel consumption. Our research group has been committed to TSS research for nearly 20 years, with focus on dynamics, control, and experimental aspects. Figure 8 shows the ground-based experimental system for TSS research at State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics.


图6 电动力绳离轨技术

Figure 6 Deorbiting technology based on electrodynamic tethers


图7 绳系卫星编队空间观测技术

Figure 7 Space observation based on tethered formation flying


图8 绳系航天器地面实验系统

Figure 8 Ground-based experimental system for TSS research


学术论文:

1.     Yang S J, Wen H, Hu Y H, Jin D P. Coordinated motion control of a dual-arm space robot for assembling modular parts. Acta Astronautica, 2020, 177, 627-638.

2.     Xu S D, Wen H, Huang Z, Jin D P. A fuzzy control scheme for deployment of space tethered system with tension constraint, Aerospace Science and Technology, 2020, 106: 106143.

3.     Ma J T, Wei Z T, Wen H, Jin D P. Boundary control of a Timoshenko beam with prescribed performance. Acta Mechanica, 2020, 231(8), 3219-3234.

4.     Wei Z T, Wen H, Hu H Y, Jin D P. Ground experiment on rendezvous and docking with a spinning target using multistage control strategy, Aerospace Science and Technology, 2020, 104: 105967.

5.     Xu S D, Wen H, Zheng H. Robust fuzzy sampled-data attitude control of spacecraft with actuator saturation and persistent disturbance. Aerospace Science and Technology, 2020, 101: 105850.

6.     Lu Y, Huang Z, Zhang W, Wen H, Jin D P. Experimental investigation on automated assembly of space structure from cooperative modular components. Acta Astronautica, 2020, 171: 378-387.

7.     Ma J T, Wen H, Jin D P. PDE model-based boundary control of a spacecraft with double flexible appendages under prescribed performance. Advances in Space Research, 2020: 65(1): 586-597.

8.     Chen Y, Wen H, Jin D P. Design and experiment of a noncontact electromagnetic vibration isolator with controllable stiffness. Acta Astronautica, 2020, 168: 130-137.

9.     罗操群, 孙加亮, 文浩, 胡海岩, 金栋平. 多刚体系统分离策略及释放动力学研究. 力学学报, 52(2), 503-513, 2020.

10.  徐兴念, 文浩, 韦正涛. 基于超二次曲线障碍描述的航天器交会对接地面实验研究. 动力学与控制学报, 18(2), 42-49, 2020.

11.  Wen H, Jin D P. De-spinning of tethered space target via partially invariable deployment with tension control, Nonlinear Dynamics, 2019, 96(1): 637-645.

12.  Liu F S, Wang L B, Jin D P, Wen H. Equivalent continuum modeling of beam-like truss structures with flexible joints. Acta Mechanica Sinica, 2019, 35(5): 1067–1078.

13.  Chen T, Shan J J, Wen H. Distributed passivity-based control for multiple flexible spacecraft with attitude-only measurements. Aerospace Science and Technology, 2019, 94: 105408.

14.  Yang S J, Wen H, Jin D P. Trajectory planning of dual-arm space robots for target capturing and base manoeuvring. Acta Astronautica, 2019, 164: 142-151.

15.  Cheng L, Wen H, Jin D P. Uncertain parameters analysis of powered-descent guidance based on Chebyshev interval method. Acta Astronautica, 2019, 162: 581-588.

16.  Dang Q Q, Gui H C, Wen H. Dual-quaternion-based spacecraft pose tracking with a global exponential velocity observer. Journal of Guidance, Control, and Dynamics, 2019, 42(9): 2106-2115.

17.  Dang Q Q, Gui H C, Xu M, Wen H. Dual-quaternion immersion and invariance velocity observer for controlling asteroid-hovering spacecraft. Acta Astronautica, 2019, 161: 304-312.

18.  Luo C Q, Wen H, Jin D P. Deployment of flexible space tether system with satellite attitude stabilization. Acta Astronautica, 2019, 160: 240-250.

19.  Chen T, Wen H, Wei Z T. Distributed attitude tracking for multiple flexible spacecraft described by partial differential equations. Acta Astronautica, 2019, 159: 637-645.

20.  Chen T, Shan J, Wen H. Distributed adaptive attitude control for networked underactuated flexible spacecraft. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55 (1): 215–225.

21.  张恒, 文浩, 罗操群. 旋转电动帆推进性能指标分析. 动力学与控制学报, 2019, 17(3): 281-287.

22.  Wen H, Jin D P, Hu H Y. Removing singularity of orientation description for modeling and controlling an electrodynamic tether. Journal of Guidance, Control, and Dynamics, 2018, 41(3): 761-766.

23.  Huang Z, Lu Y, Wen H, Jin D P. Ground-based experiment of capturing space debris based on artificial potential field. Acta Astronautica, 2018, 152: 235–241.

24.  Luo C Q, Wen H, Jin D P. Libration control of bare electrodynamic tether for three-dimensional deployment. Astrodynamics, 2018, 2(3): 187–199.

25.  Yu B S, Wen H, Jin D P. Review of deployment technology for tethered satellite systems. Acta Mechanica Sinica, 2018, 34(3): 754-768.

26.  Chen T, Wen H. Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronautica, 2018, 147: 86–96.

27.  Ma J T, Jin D P, Wei Z T, Chen T Wen H. Boundary control of a flexible manipulator based on a high order disturbance observer with input saturation. Shock and Vibration, 2018: Article ID 2086424.

28.  刘福寿, 金栋平, 文浩. 基于PDE模型的空间柔性曲梁无穷维Kalman滤波器设计. 中国科学: 物理学 力学 天文学, 2017, 47(10): 104611

29.  余瑶, 文浩, 陈提. 中心刚体-柔性梁应变反馈多目标优化控制. 动力学与控制学报, 2017, 15(4): 356-362.

30.  Yu B S, Jin D P, Wen H. An analytical control law of length rate for tethered satellite system. Meccanica. 2017, 52(9): 2035–2046.

31.  Chen T, Wen H, Hu H Y, Jin D P. Distributed finite-time tracking for a team of planar flexible spacecraft. ISA Transactions, 2017, 69: 214–221.

32.  Yu B S, Wen H. Vibroimpact dynamics of a tethered satellite system. Shock and Vibration, 2017: Article ID 8748094.

33.  Yu B S, Jin D P, Wen H. Analytical deployment control law for a flexible tethered satellite system. Aerospace Science and Technology, 2017, 66: 294–303.

34.  Liu F S, Jin D P, Wen H. Equivalent dynamic model for hoop truss structure composed of planar repeating elements. AIAA Journal, 2017, 55(3): 1058-1063.

35.  Chen T, Wen H, Hu H Y, Jin D P. On-orbit assembly of a team of flexible spacecraft using potential field based method. Acta Astronautica, 2017, 133: 221–232.

36.  Chen T, Wen H, Jin D P, Hu H Y. Quasi-time-optimal controller design for a rigid-flexible multibody system via absolute coordinate-based formulation. Nonlinear Dynamics, 2017, 88(1): 623–633.

37.  Wu P C, Wen H, Chen T, Jin D P. Model predictive control of rigid spacecraft with two variable speed control moment gyroscopes. Applied Mathematics and Mechanics (English Edition), 2017, 38(11): 1551–1564.

38.  Wen H, Yu B S, Jin D P. Energy-based current control for stabilizing a flexible electrodynamic tether system. Journal of Beijing Institute of Technology, 2017, 26(1):1-4.

39.  Wen H, Chen T, Jin D P, Hu H Y. Passivity-based control with collision avoidance for a hub-beam spacecraft. Advances in Space Research, 2017, 59(1): 425-433.

40.  Chu Y P, Wen H, Chen T. Nonlinear modeling and identification of an aluminum honeycomb panel with multiple bolts. Shock and Vibration, 2016: Article ID 1276753.

41.  Liu F S, Jin D P, Wen H. Optimal vibration control of curved beams using distributed parameter models. Journal of Sound and Vibration, 2016, 384: 15-27.

42.  Pang Z J, Jin D P, Yu B S, Wen H. Nonlinear normal modes of a tethered satellite system of two degrees of freedom under internal resonances. Nonlinear Dynamics, 2016, 85(3): 1779–1789.

43.  Yu B S, Jin D P, Wen H. Nonlinear dynamics of a flexible tethered satellite system subject to space environment. Applied Mathematics and Mechanics, 2016, 37(4): 485-500.

44.  Chen T, Wen H, Hu H Y, Jin D P. Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronautica, 2016, 121: 271-281.

45.  Chen T, Wen H, Jin D P, Hu H Y. New design and dynamic analysis for deploying rolled booms with thin wall. Journal of Spacecraft and Rockets. 2016, 53(1): 225-230.

46.  Wen H, Jin D P, Hu H Y. Three-dimensional deployment of electro-dynamic tether via tension and current control with constraints. Acta Astronautica, 2016, 129: 253-259.

47.  Wen H, Zhu Z H, Jin D P, Hu H Y. Model predictive control with output feedback for a deorbiting electrodynamic tether system. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2451-2456.

48.  Wen H, Zhu Z H, Jin D P, Hu H Y. Exponentially convergent velocity observer for an electrodynamic tether in an elliptical orbit. Journal of Guidance, Control, and Dynamics, 2016, 39(5): 1112-1117.

49.  Wen H, Zhu Z H, Jin D P, Hu H Y. Space tether deployment control with explicit tension constraint and saturation function. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 915-920.

50.  Wen H, Zhu Z H, Jin D P, Hu H Y. Tension control of space tether via online quasi-linearization iterations. Advances in Space Research, 2016, 57(3):754-763.

51.  Wen H, Zhu Z H, Jin D P, Hu H Y. Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronautica, 2016, 119:110-117.

52.  余本嵩, 文浩, 金栋平, 陈提. 空间电动力绳系统理论及实验研究. 力学进展, 2016, 46: 201605

53.  Wu X J, Wen H, Chen T. Manoeuvres of spacecraft with flexible appendage in obstacle environment, International Journal of Space Science and Engineering, 2015, 3(1), 16-30.

54.  余本嵩, 文浩, 金栋平. 绳系卫星编队动力学及控制研究进展. 动力学与控制学报, 2015, 13(5): 321-328.

55.  Jin D P, Wen H, Chen H. Nonlinear resonance of a subsatellite on a short constant tether. Nonlinear Dynamics, 2013, 71(3): 479-488.

56.  Wen H, Jin D P, Hu H Y. Costate estimation for dynamic systems of the second order. Science in China Series E, 2009, 52(3): 752-760.

57.  Wen H, Jin D P, Hu H Y. Feedback control for retrieving an electro-dynamic tethered sub-satellite. Tsinghua Science & Technology, 2009, 14(S2): 79-83.

58.  Wen H, Jin D P, Hu H Y. Infinite-horizon control for retrieving a tethered subsatellite via an elastic tether. Journal of Guidance, Control, and Dynamics, 2008, 31(4): 899-906.

59.  Wen H, Jin D P, Hu H Y. Optimal feedback control of the deployment of a tethered subsatellite subject to perturbations. Nonlinear Dynamics, 2008, 51(4): 501-514.

60.  Wen H, Jin D P, Hu H Y. Advances in dynamics and control of tethered satellite systems. Acta Mechanica Sinica, 2008, 24(3): 229-241.

61.  Wen H, Jin D P, Hu H Y. Three-dimensional optimal deployment of a tethered subsatellite with an elastic tether. International Journal of Computer Mathematics, 2008, 85(6): 915-923.

62.  陈辉, 文浩, 金栋平, 胡海岩. 带刚性臂的空间绳系机构偏置控制. 中国科学: 物理学 力学 天文学, 2013, 43(4): 363-371.

63.  陈辉, 文浩, 金栋平, 胡海岩. 绳系卫星在轨试验及地面物理仿真进展. 力学进展, 2013, 43(1): 174-184.

64.  文浩, 陈辉, 金栋平, 胡海岩. 带可控臂绳系卫星释放及姿态控制. 力学学报, 44(2), 408-414, 2012.

65.  刘丽丽, 文浩, 金栋平, 胡海岩. 三维电动力绳系子卫星轨道转移的最优控制. 计算力学学报, 2011, 28(2): 178-182.

66.  王晓宇, 文浩, 金栋平, 考虑姿态的绳系卫星后退时域回收控制. 力学学报, 2010, 42(5): 919-925.

67.  文浩, 金栋平, 胡海岩. 绳系卫星收放控制地面实验研究. 振动工程学报, 2010, 23(1), 7-11.

68.  陈辉, 文浩, 金栋平, 胡海岩. 用弹性绳系系统进行空间捕捉的最优控制. 宇航学报, 2009, 30(2): 550-555.

69.  刘丽丽, 文浩, 金栋平, 胡海岩. 空间碎片对绳系卫星冲击的影响分析. 振动与冲击, 2009, 28(7): 12-16.

70.  刘丽丽, 文浩, 金栋平, 胡海岩. 绳系卫星轨道转移的最优控制研究. 航空学报, 2009, 30(2): 332-336.

71.  刘丽丽, 文浩, 金栋平, 胡海岩. 三体绳系卫星面内编队飞行的回收控制. 振动工程学报, 2008, 21(3): 223-227.

72.  文浩, 金栋平, 胡海岩. 基于微分包含的绳系卫星时间最优释放控制. 力学学报, 2008, 40(1): 135-140.

73.  文浩, 金栋平, 胡海岩. 倾斜轨道电动力绳系卫星回收控制. 力学学报, 2008, 40(3): 375-380.

74.  于明礼, 文浩, 胡海岩, 赵永辉. 二维翼段颤振的μ控制. 航空学报, 2007, 28(2), 340-343.

75.  于明礼, 文浩, 胡海岩. 二维翼段颤振的H∞控制. 振动工程学报, 2006, 19(3), 326-330.

76.  金栋平, 文浩, 胡海岩. 绳索系统的建模、动力学和控制.力学进展, 2004, 34 (3): 304-313.

科研成果获奖及专利:

2011年全国优秀博士学位论文

承担的科研项目情况:

国家自然科学基金青年、面上、重点和重大项目,博士学科点基金,中国博士后基金,全国优博专项基金,国家重点实验室自主研究课题,民用航天及载人航天预研项目,与航天1,5和8院合作研究项目等


  • 教育经历Education Background
  • 工作经历Work Experience
    2009.3 至今
    • 南京航空航天大学
  • 研究方向Research Focus
  • 社会兼职Social Affiliations