Pi Dechang
Personal Homepage
Paper Publications
MTEEGC: A novel approach for multi-trial EEG clustering
Hits:

Affiliation of Author(s):计算机科学与技术学院/人工智能学院/软件学院

Journal:Appl. Soft Comput. J.

Abstract:This paper explores multi-trial EEG (Electroencephalography signal) clustering and proposes a novel centroid-based approach for it. It firstly utilizes an improved cross correlation to measure similarities of multi-trial EEGs and then proposes an optimal EEG feature extraction to seek cluster centroids based on the improved cross correlation similarities. Finally, it leads to a novel algorithm called MTEEGC for multi-trial EEG clustering. MTEEGC yields high-quality multi-trial EEG clustering with respect to the intra-cluster compactness as well as the inter-cluster scatter. Meanwhile, it also demonstrates the superiority of MTEEGC in clustering accuracy over 10 state-of-the-art time series clustering algorithms through a detailed experimentation using standard cluster validity criteria on 5 real-world multi-trial EEG datasets. Especially, compared with the worst and the best algorithms in the 10 baseline algorithms, MTEEGC respectively achieves 36.11% and 2.53% mean improvements with clustering accuracy (i.e., RI) on 5 multi-trial EEG datasets. © 2018 Elsevier B.V.

ISSN No.:1568-4946

Translation or Not:no

Date of Publication:2018-10-01

Co-author:代成龙,崔琳,朱延龙

Correspondence Author:Pi Dechang

Personal information

Professor
Supervisor of Doctorate Candidates

Alma Mater:南京航空航天大学

School/Department:College of Computer Science and Technology

Business Address:南航江宁校区东区计算机学院

Contact Information:邮箱:nuaacs@126.com 电话:025-52110071

Click:

Open time:..

The Last Update Time:..


Copyright©2018- Nanjing University of Aeronautics and Astronautics·Informationization Department(Informationization Technology Center)

MOBILE Version