Personal Homepage

Personal Information

MORE+

Degree:Doctoral Degree in Science
School/Department:计算机科学与技术学院/软件学院

李野

+

Gender:Male

Education Level:清华大学

Alma Mater:清华大学

Personal Profile

Current position: Home / Personal Profile

模式分析与机器智能(工业与信息化部)重点实验室、南京航空航天大学百强科研团队成员。


研究方向:机器学习和计算数学的交叉学科研究,AI for Science的前沿研究领域,基于物理信息的神经网络、神经算子等算法和模型的理论分析及应用。理论方面,主要研究物理与AI的融合机理,提高模型的稳定性和泛化能力;应用方面,主要研究算法在流场仿真、地震波反演等方面的应用。


以第一/通信作者在ICML、AAAI、IJCAI等人工智能A类会议和Communication in Computational Physics、Science China Mathematics等应用数学SCI期刊发表学术论文十余篇。主持国家自然科学青年基金及南航前瞻布局、交叉融合等专项项目,作为主要成员参与科技部科技创新2030重大项目、173基金、XX6等国防项目多项。


开设了面向研究方向的课程《深度学习与计算物理》,与数学、力学等方向建立交叉研究,与清华、南大、东大、南理工、NUS等保持合作。


每年招收2~3名硕士研究生,欢迎感兴趣的同学了解报考,优秀的同学可毕业推荐到清华等学校继续深造,邮箱yeli20@nuaa.edu.cn。


近年论文(*表示通讯作者):

【9】Xu X L, Li Y*, Huang Z Y.  Refined generalization analysis of the Deep Ritz Method and Physics-Informed Neural NetworksICML 2025 (CCF-A会议)

【8】Xu X L, Li Y*, Huang Z Y.  A Priori Estimation of the Approximation, Optimization and Generalization Errors of Random Neural Networks for Solving Partial Differential Equations. IJCAI 2025 (CCF-A会议)

【7】Shan B, Li Y*Huang S J. VI-PINNs: Variance-involved physics-informed neural networks for fast and accurate prediction of partial differential equations. Neurocomputing 2025.

【6】Zhou Y Y, Li Y*, Feng L, Huang S J. Improving Generalization of Deep Neural Networks by Optimum Shifting. AAAI 2025 (CCF-A会议本科生一作)

【5】Li Y*, Chen S Q, Shan B, Huang S J. Causality-enhanced Discreted Physics-informed Neural Networks for Predicting Evolutionary Equations. IJCAI 2024 (CCF-A会议,本科生二作)

【4】Li Y*, Du T, Huang Z Y. Tailored Finite Point Operator Networks for Interface Problems. ICANN 2024 (CCF-C).

【3】Du T, Huang Z Y, Li Y*. Approximation and Generalization of DeepONets for Learning Operators Arising from a Class of Singularly Perturbed Problems, East Asian Journal on Applied Mathematics 2024.

【2】Li Y*, Du T, Pang Y W, Huang Z Y. Component Fourier Neural Operator for Singularly Perturbed Differential Equations,AAAI 2024 (CCF-A会议)

【1】Li Y*, Chen S C, Huang S J. Implicit Stochastic Gradient Descent for Training Physics-Informed Neural Networks,AAAI 2023 (CCF-A会议)