Feng Lu
Professor Supervisor of Doctorate Candidates
Alma Mater:南京航空航天大学
Education Level:南京航空航天大学
Degree:Doctoral Degree in Engineering
School/Department:College of Energy and Power Engineering
Discipline:Other specialties in Power Engineering and Engineering Thermophysics. Aerospace Propulsion Theory and Engineering
Business Address:明故宫校区A10-536办公室
E-Mail:
Hits:
Affiliation of Author(s):能源与动力学院
Journal:Aerospace Science and Technology, 2018, 76, 126-140.
Key Words:Aircraft engine Health estimation Nonlinear Kalman filter Multi-sensor Measurement uncertainty
Abstract:This paper is concerned with nonlinear Kalman filtering approach to aircraft engine gas path analysis with measurement uncertainty. The uncertain measurements are characterized by time delay and packet dropout. The delay step of physical parameters occurs randomly, and its probability is regulated by a set of uncorrelated variables following Poisson distribution and uniform distribution. Packet dropout is caused as the data are not collected in time or data buffer overflows. The novel nonlinear Kalman filters (KFs) are developed using a multistep recursive estimation strategy with self -tuning buffer in the presence of gas path measurement uncertainty. The data buffers are introduced in the state estimator, the length of which is adaptive to the information loss level. The algorithms run recursively using the new arrival data and buffer position information. With a more effective arrangement of the collected measurements in real time, the better estimation accuracy of gas path health status is expected. Simulations involving abrupt fault and degradation datasets of aircraft engines were carried out to numerically evaluate and compare the performance of the improved nonlinear KFs with their existing KFs in the context of health estimation with time delay and packet dropout. The test results demonstrate that the proposed methodology not only reduces the computational time but also obtains a satisfactory accuracy for state estimation in the cases of engine gas path measurement uncertainty. (C) 2018 Elsevier Masson SAS. All rights reserved.
ISSN No.:1270-9638
Translation or Not:no
Date of Publication:2018-05-01
Co-author:Gao, Tianyangyi,Huang Jinquan,Qiu, Xiaojie
Correspondence Author:Feng Lu
鲁 峰,男,教授/博导,现为中国空天动力联合会发动机控制技术专业委员会委员,国家先进航空发动机协同创新中心适航组成员,中国(南京)知识产权保护中心技术专家,国家自然科学基金函评专家,教育部研究生学位论文评审专家,江苏省能源学会智慧能源专业委员会委员,《推进技术》、《海军航空大学学报》期刊编委,《航空动力学报》、《南航学报》青年编委,担任过多型发动机控制器、控制系统状态鉴定,健康管理方案评审专家。主持国家自然科学基金2项、LJ重大专项专题、LJ基础中心重点项目、JKW重大项目、国防173课题以及其他基金/国防预研等项目30余项,获得教育部科技进步二等奖和国防科技进步二等奖各1项。获江苏省“青蓝工程”优秀青年骨干教师、教育部在线教育研究中心“智慧教学之星”、中国航空学会优秀硕士指导教师称号,校教学优秀奖,校教学创新大赛一等奖(正高组)。在国内外期刊和会议上发表学术论文百余篇,包括AIAA J., IEEE TII, J DYN SYST-T ASME, AST等国际期刊的SCI论文60余篇,应邀为30余种期刊审稿,航空学报(英文版)优秀审稿专家,授权国家发明专利20余项,软件著作权6项,主编教材1部,爱思唯尔“全球前2%顶尖科学家”。
主讲课程:自动控制原理(本科生);航空发动机控制原理(本科生);自适应控制(研究生)
指导/协助指导研究生:毕业研究生50余名,包括博士生10名;在校研究生10余名,包括博士生4名。