Feng Lu

Professor   Supervisor of Doctorate Candidates  

Alma Mater:南京航空航天大学

Education Level:南京航空航天大学

Degree:Doctoral Degree in Engineering

School/Department:College of Energy and Power Engineering

Discipline:Other specialties in Power Engineering and Engineering Thermophysics. Aerospace Propulsion Theory and Engineering

Business Address:明故宫校区A10-536办公室

E-Mail:


Paper Publications

In-flight adaptive modeling using polynomial LPV approach for turbofan engine dynamic behavior

Hits:

Affiliation of Author(s):能源与动力学院

Journal:Aerospace Science and Technology, 2017, 64, 223-236.

Key Words:Low-bypass turbofan engine Performance degradation LPV modeling Kalman filter Kernel extreme learning machine

Abstract:A key to achieve reliable model-based engine control, diagnostics and prognostics resides in in-flight engine model with high confidence level. Presented here is a new lifecycle real-time model to describe turbofan engine dynamic behavior called ALPVM (Adaptive Linear Parameter Varying Model), and the issues of engine/model mismatch compensation and performance degradation adaption are focused on. This methodology is different from the widely used STORM (Self Tuning On-board Real-time Model) presented by Pratt & Whitney, and the ALPVM is proposed on the linear parameter varying framework. The system matrices of ALPVM are computed using simultaneous step response data, and the polynomial LPV model is designed by the sets of polynomial fitting curves with scheduling parameters of engine operation in continuous forms. The IR-KELM (independent reduction kernel extreme learning machine) is developed to improve computational efforts without prediction accuracy reduction, and it serves an empirical model for polynomial LPV model mismatch compensation. The mechanisms of predict error control and linear dependency are considered in the IR-KELM, and it leads to decrease the hidden node number and simplify the IR-KELM topology. Kalman filter is employed to tune the health parameters of LPV model over its course of lifetime. Finally, the IR-KELM performance is confirmed by the benchmark data, and the simulation results from the ALPVM application to track a low-bypass turbofan engine dynamic behavior in the flight envelope indicate the effectiveness and usefulness of the proposed approach. (C) 2017 Elsevier Masson SAS. All rights reserved.

ISSN No.:1270-9638

Translation or Not:no

Date of Publication:2017-05-01

Co-author:Qian, Junning,Huang Jinquan,Qiu, Xiaojie

Correspondence Author:Feng Lu

Pre One:Nonlinear Kalman filters for aircraft engine gas path health estimation with measurement uncertainty

Next One:鲁峰等, Life cycle performance estimation and in-flight health monitoring for gas turbine engine, Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2016, 138(9), p.091009.

Profile

鲁 峰,男,教授/博导,现为中国空天动力联合会发动机控制技术专业委员会委员,国家先进航空发动机协同创新中心适航组成员,中国(南京)知识产权保护中心技术专家,国家自然科学基金函评专家,教育部研究生学位论文评审专家,江苏省能源学会智慧能源专业委员会委员,《推进技术》、《海军航空大学学报》期刊编委,航空动力学报南航学报青年编委,担任过多型发动机控制器、控制系统状态鉴定,健康管理方案评审专家。主持国家自然科学基金2项、LJ重大专项专题、LJ基础中心重点项目、JKW重大项目、国防173课题以及其他基金/国防预研等项目30余项,获得教育部科技进步二等奖和国防科技进步二等奖各1项。获江苏省“青蓝工程”优秀青年骨干教师、教育部在线教育研究中心“智慧教学之星”、中国航空学会优秀硕士指导教师称号,校教学优秀奖,校教学创新大赛一等奖(正高组)。在国内外期刊和会议上发表学术论文百余篇,包括AIAA J., IEEE TII, J DYN SYST-T ASME, AST等国际期刊的SCI论文60余篇,应邀为30余种期刊审稿,航空学报(英文版)优秀审稿专家,授权国家发明专利20余项,软件著作权6项,主编教材1部,爱思唯尔“全球前2%顶尖科学家”。

主讲课程:自动控制原理(本科生);航空发动机控制原理(本科生);自适应控制(研究生)

指导/协助指导研究生:毕业研究生50余名,包括博士生10名;在校研究生10余名,包括博士生4名。