![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
光学工程 -- 【招收博士、硕士研究生】 -- 航天学院
航空宇航科学与技术 -- 【招收硕士研究生】 -- 航天学院
电子信息 -- 【招收博士、硕士研究生】 -- 航天学院
机械 -- 【招收硕士研究生】 -- 航天学院
性别:男
毕业院校:西安电子科技大学
学历:西安电子科技大学
学位:工学博士学位
所在单位:航天学院
办公地点:航天学院D11楼403室
电子邮箱:
Recursive Dictionary-Based Simultaneous Orthogonal Matching Pursuit for Sparse Unmixing of Hyperspectral Data
点击次数:
所属单位:航天学院
发表刊物:Trans. Nanjing Univ. Aero. Astro.
摘要:The sparse unmixing problem of greedy algorithms still remains a great challenge at finding an optimal subset of endmembers for the observed data from the spectral library, due to the usually high correlation of the spectral library. Under such circumstances, a novel greedy algorithm for sparse unmixing of hyperspectral data is presented, termed the recursive dictionary-based simultaneous orthogonal matching pursuit (RD-SOMP). The algorithm adopts a block-processing strategy to divide the whole hyperspectral image into several blocks. At each iteration of the block, the spectral library is projected into the orthogonal subspace and renormalized, which can reduce the correlation of the spectral library. Then RD-SOMP selects a new endmember with the maximum correlation between the current residual and the orthogonal subspace of the spectral library. The endmembers picked in all the blocks are associated as the endmember sets of the whole hyperspectral data. Finally, the abundances are estimated using the whole hyperspectral data with the obtained endmember sets. It can be proved that RD-SOMP can recover the optimal endmembers from the spectral library under certain conditions. Experimental results demonstrate that the RD-SOMP algorithm outperforms the other algorithms, with a better spectral unmixing accuracy. © 2017, Editorial Department of Transactions of NUAA. All right reserved.
ISSN号:1005-1120
是否译文:否
发表时间:2017-08-01
合写作者:Guo, Wenjun,沈秋,Wang, Dandan
通讯作者:孔繁锵