孔繁锵

个人信息Personal Information

教授 博士生导师

招生学科专业:
光学工程 -- 【招收博士、硕士研究生】 -- 航天学院
航空宇航科学与技术 -- 【招收硕士研究生】 -- 航天学院
电子信息 -- 【招收博士、硕士研究生】 -- 航天学院
机械 -- 【招收硕士研究生】 -- 航天学院

性别:男

毕业院校:西安电子科技大学

学历:西安电子科技大学

学位:工学博士学位

所在单位:航天学院

办公地点:航天学院D11楼403室

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Dictionary-aided hyperspectral unmixing based on constrained l(2,q)-l(2,p) optimization

点击次数:

所属单位:航天学院

发表刊物:DIGITAL SIGNAL PROCESSING

关键字:Hyperspectral unmixing Dictionary-aided unmixing Sparse regression Simultaneous sparse representation

摘要:Dictionary-aided unmixing has been introduced as a semi-supervised unmixing method, under the assumption that the observed mixed pixel of a hyperspectral image can be expressed in the form of different linear combinations of a few spectral signatures from an available spectral library. Sparse regression-based unmixing methods have been recently proposed to solve this problem. Mostly, I-p-norm minimization is a closer surrogate to the l(0)-norm minimization and can be solved more efficiently than l(1)-norm minimization. In this paper, we model the hyperspectral unmixing as a constrained l(2,q)-l(2,p) optimization problem. To effectively solve the induced optimization problems for any q (1 <= q <= 2) and p (0 < p <= 1), an iteratively reweighted least squares algorithm is developed and the convergence of the proposed method is also demonstrated. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method yields better spectral unmixing accuracy in both quantitative and qualitative evaluations than state-of-the-art unmixing algorithms. (C) 2017 Elsevier Inc. All rights reserved.

ISSN号:1051-2004

是否译文:

发表时间:2018-02-01

合写作者:Bian, Chending,Li, Yunsong,Wang, Keyan

通讯作者:孔繁锵