Jun JIANG
Researcher Supervisor of Doctorate Candidates
Gender:Male
Education Level:Postgraduate (Postdoctoral)
Degree:Doctoral Degree in Engineering
School/Department:College of Automation Engineering
Discipline:Electrical Power System and Automation. High Voltage and Electrical Insulation Engineering
Business Address:电气楼414室
Contact Information:jiangjun0628#nuaa.edu.cn(联系时将#替换为@)
Hits:
Affiliation of Author(s):自动化学院
Journal:IEEE Trans Power Delivery
Abstract:Dissolved gases analysis (DGA) provides widely recognized practice for oil-immersed power transformers, and it is mainly interpreted for fault diagnosis. In order to accurately estimate the health index state of power transformers and predict the incipient operation failure, a dynamic fault prediction technique based on hidden Markov model (HMM) of DGA is proposed in this paper. Gaussian mixture model, as a soft clustering method, is used to extract the static features of different health states from a DGA dataset of 65 in-service power transformers with 1600 days operation. Especially, a sub-health state is introduced to enrich the health index and aging stages of power transformers. The static features between health states and concentrations of dissolved gases are built, and the effectiveness of clustering is cross validated. Furthermore, taking time sequence into consideration, transition probability of power transformer between different health states based on the HMM model is calculated and analyzed. The effectiveness of dynamic early warning and incipient fault prediction in sub-health status of in-service power transformers has been proved. Moreover, the dynamic fault prediction is able to provide decision-making basis for practical condition-based operation and maintenances. © 1986-2012 IEEE.
ISSN No.:0885-8977
Translation or Not:no
Date of Publication:2019-08-01
Co-author:Chen, Ruyi,Chen, Min,Wang, Wenhao,Zhang Charles
Correspondence Author:Jun JIANG
专聘研究员,博导/硕导,南京航空航天大学长空学者,每年招收电气工程硕士研究生和博士研究生。目前主要从事电力装备状态监测与故障诊断、航空航天电气系统故障检测、电力电子高频绝缘等方面的研究,具体工作包括:电力变压器/电力电缆/GIS新型传感研究、多电/全电飞机电气故障检测、电力电子高频绝缘损伤机理等。IEEE Senior Member、Cigre Member、中国电机工程学会高级会员、中国电工技术学会高级会员、Cigre JWG D1/A2.77、Cigre WG B3/A3.60工作组成员等。已发表学术论文60余篇,SCI检索论文50余篇;参与编写国家标准1项、行业标准1项;授权国际专利2项(美国)、国家发明专利25项,高质量转化专利成果3项;获得中国电工技术学会科技进步一等奖1项、中国电工技术学会科技进步二等奖1项等科技奖励。
【学生培养方面】目前在读博士生4人(含直博生1人)、硕士研究生11人;已指导毕业研究生16名,入职大型央企12人(其中电力公司9人)、国防院所3人、政府事业单位1人。
指导的研究生获国家奖学金9人(top 5%)、三好研究生标兵6人(top 1%)、三好研究生6人、优秀毕业生3人、优秀学位论文2篇(1篇获江苏省优秀学位论文),国际国内学术会议荣誉5人,指导的学生主持江苏省研究生创新项目1项和校级创新基金项目8项,研究生获得全国性创新大赛一等奖2项等荣誉。
欢迎追求上进、热爱思考、勤于动手的同学加入,共同发现问题、解决问题并开展有点意思的应用型学术探究!
为避免相互不适,“躺平”混学历者请绕行,谢谢!