中文
  • Pingting Chen
  • Doctoral Degree in Engineering
  • 能源动力. Power Machinery and Engineering
  • 能源与动力学院
 

Educational Experience

  • 2009.82013.7

     清华大学   能源动力系统及自动化   Bachelor's degree   Undergraduate (Bachelor’s degree) 

  • 2013.72019.10

     清华大学   动力工程及工程热物理   博士   With Certificate of Graduation for Doctorate Study 

Work Experience

  • 2019.102021.2

    中国船舶重工集团新能源有限公司      总师办      研发主管

  • 2021.32022.7

    南京航空航天大学      能源与动力学院      上岗副研究员

  • 2022.7Now

    南京航空航天大学      能源与动力学院      副教授

Social Affiliations

  • 2025.4Now

    中国字航学会空天动力燃烧与传热专业委员会青年工作小组成员

  • 2023.12Now

    《航空发动机》青年编委

  • 2022.9Now

    国家自然科学基金委工程一处基金委评议人

  • 2021.8Now

    《推进技术》青年编委

  • 2022.32022.10

    第五届中国国际透平机械学术会议传热分会组织人

  • 2021.6Now

    江苏省工程热物理学会会员

  • 2022.10Now

    南京航空航天大学留学人员联谊会会员

Research Focus

  • [1] 数字孪生与机器学习在涡轮传热中的应用

  • [2] 传热传质

  • [3] 航空发动机高效冷却

  • [4] 血流动力学模拟

 

Personal Information

个人简介:陈娉婷,1992年生,博士,副教授,硕士生导师,2021年3月至今在南京航空航天大学能源与动力学院燃烧传热与热能系(205系)工作。入选中国科协青年人才托举工程(第七届),江苏省“双创博士”。主持国家自然科学基金青年项目1项,获得南京留学人员科技创新项目择优资助,并以主要负责人身份承担多项国家级项目专题;研究团队:“高效燃烧传热与混合推进”团队,团队负责人:毛军逵教授/院长/长江学者,团队共10+名导师共同提供指导;教师团队: 第二批“全国高校黄大年式教师团队”-“动力系统能量高效利用”团队,团队负责人:毛军逵教授/院长/长江学者;研究小组:“智能流体传热”小组,负责人:陈娉婷。学术荣誉:南京市留学人员科技创新项目择优资助,2023;江苏省“双创博士”,2022;中国科协青年人才托举工程(第7届),2021;等。教育经历:2013.8-2019.10 清华大学 动力工程及工程热物理 博士 导师:任静教授、蒋洪德院士;2017.10-2018.11 University of Minnesota 机械工程 联合培养博士 导师:Prof. Terrence W. Simon;2009.8-2013.7 清华大学 能源动力系统及自动化 学士 导师:王淑娟教授。研究方向:航空发动机涡轮高效传热及冷却;数字孪生与机器学习;航空发动机空气系统及热分析;血流动力学模拟。教学工作:2024年起担任本科《热工基础》课程负责人,2023-2024学年评教前10%、2023年起担任《工程热力学基础》课程主讲人,2023-2024/2022-2023学年评教“优秀”。招生需求:专硕:085800 能源动力 04能源和动力工程;学硕:080700 动力工程及工程热物理 04推进系统燃烧与传热;团队每年招收硕士生20+名,博士生5+名。欢迎对本团队及本小组研究方向感兴趣的同学咨询报考!研究小组每年招收本科生自主项目设计/毕业设计3-6项,老师可以提供一些想法,也鼓励大家提出自己的点子,团队将提供实验场地、计算资源、经费支持和相关指导。(2024届毕设同学的工作已发表在空天动力燃烧与传热专委会学会交流会,并获评会议优秀论文2023届毕设同学的工作已发表在ISTFD、工热年会等国际、国内会议上)发表学术论文情况: https://www.researchgate.net/profile/Pingting-Chen/research传热传质及高效冷却: [1]. Chen P*, Zhang D, Liu H, Mao J. Conjugate heat transfer analysis on composite cooling structure with low Reynolds number using the decoupling method. Case Studies in Thermal Engineering. 2024 Sep 1;61:105051.(中科院2区Top期刊,自己写的)[2]. Liu, H., Zhang, D., Chen, P.*, & Han, X. (2024). Numerical investigation on effects of low Reynolds number conditions on fan shaped film cooling performances. Physics of Fluids, 36(6). (中科院1区Top期刊,同学研二上学期投稿)[3]. Zhang, D., Liu, H., Chen, P.*, & Mao, J. (2024). Numerical analysis on multiple parameters for overall cooling effectiveness of impingement effusion cooling with low Reynolds number. International Communications in Heat and Mass Transfer, 153, 107366.(中科院1区Top期刊,同学研一上学期投稿)[4]. Yang, Y., Mao, J.*, Chen, P.*, Guo, N., & Wang, F. (2024). Prediction and Analysis of Transient Turbine Tip Clearance Using Long Short-Term Memory Neural Network. Journal of Engineering for Gas Turbines and Power, 1-31. (燃气轮机行业顶刊,合作指导博士生)[5]. Yang, Y., Mao, J.*, Guo, N., Chen, P.* and Wang, F., 2023. Evaluation of Turbine Tip Clearance with Performance Degradation Using Multilayer Perceptron. Journal of Engineering for Gas Turbines and Power, pp.1-45.(燃气轮机行业顶刊,合作指导博士生)[6]. Yang, Y., Mao J*, Chen P*, Zhang, H., & Tang, H. (2023). Numerical investigation on transpiration cooling performance with different porosities and mainstream pressure gradients. International Journal of Thermal Sciences, 2023,184, 107991.(中科院2区,JCRQ1,合作指导博士生)[7]. Yang Y, Mao J *, Chen P*, et al. Numerical investigation of impingement heat transfer on the crossflow channel with vortex generators[J]. Applied Thermal Engineering, 2022, 201: 117780. (中科院1区Top期刊,合作指导博士生)[8]. Bi S, Mao J*, Chen P*, et al.Effect of Multiple Cavities and Tip Injection on the Aerothermal Characteristics of the Squealer Tip in Turbine Stage. Applied Thermal Engineering, 119631. (中科院1区Top期刊,合作指导博士生)[9]. Chen P, Zhao K, Li X*, et al. Full Coverage Effects of Varying Non-axisymmetric Contours of the Turbine Endwall on Aerodynamics and Heat Transfer Aspects: A Sensitivity Analysis Study [J]. International Journal of Thermal Sciences,2021.(中科院2区,JCRQ1)[10].Chen, P., Shi, W., Li, X., Ren, J., & Jiang, H. (2021). Numerical study of using dean vortices to enhance the film cooling performance for fan shaped hole. International Journal of Thermal Sciences, 165, 106913.(中科院2区,JCRQ1)[11].Chen P, Li, X*., Ren, J., &Jiang, H. Multi-objective optimization of non-axisymmetric contoured endwall for axial turbines[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2021, 12(1): 1-9.[12].Chen P, Wang L, Li X*, et al. Effect of axial turbine non-axisymmetric endwall contouring on film cooling at different locations[J]. International Journal of Heat and Mass Transfer, 2020(中科院1区Top期刊)[13].Chen P, Wang L, Li X*, et al. Enhancement of Film Cooling Effectiveness Using Dean Vortices[J]. Journal of Turbomachinery, 2020, 142(1). (燃气轮机行业顶刊)[14].Chen P, Xue Q, Li X* et al. Full coverage film cooling on a non-axisymmetric contoured endwall and the baseline endwall[J]. International Journal of Thermal Sciences, 2020, 158: 106562.[15].Chen P, Li X*, Ren J, et al. Influence of endwall 2D contouring on endwall adiabatic cooling effectiveness and aerodynamic performance[J]. International Journal of Heat and Mass Transfer, 2019, 137: 690-702. (中科院1区Top期刊)[16].Chen P, Alqefl M, Li X*, et al. Cooling effectiveness and aerodynamic performance in a 2D-Contoured endwall passage with different mass flow ratios[J]. International Journal of Thermal Sciences, 2019, 142: 233-246.[17].陈娉婷*,李雪英,任静,蒋洪德.燃烧室温度剖面对非轴对称端壁冷却的影响[J].工程热物理学报,2019,40(01):191-197.[18]..陈娉婷*,秦晏旻,任静,蒋洪德.带肋通道和气膜冷却交互下的绝热和耦合传热研究[J].工程热物理学报,2016,37(07):1422-1426.[19].陈娉婷*,李雪英,任静,蒋洪德.冲击衬套对于一级静叶气膜孔流量分配和气膜冷却效率的影响[J].工程热物理学报,2015,36(08):1662-1665. [20]..Xiaoqi Sun, Simo Sun,Pingting Chen*, et al. Research on the in-hole Roughness Modeling of Film Cooling Based on the Autocorrelation[C]// Function,ISTFD 2023(部分同学本科毕设)[21].Dingcheng Zhang, HaibinLiu, Pingting Chen*, et al. Experimental Modeling and Cooling Performance of Turbine Cooling withImpingement and Film Cooling under Low Reynolds Number Conditions [C]// Function,ISTFD 2023(同学本科毕设)[22].Chen P, Wang L, Li X*, Ren J, Jiang H. Enhancement of Film Cooling Effectiveness using Dean Vortices [C]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition.(燃气轮机行业顶会,EI)[23].Chen P, Li X*, Ren J, Jiang H. Multi-objective Optimization of Non-axisymmetric Contoured Endwall for Axial Turbines [C]// IGTC 2019: International Gas Turbine Congress 2019 Tokyo.[24].Chen P, Gao H, Li X*, Ren J, Jiang H. Effects of Endwall 3D Contouring on Film Cooling Effectiveness of Cylindrical Hole Injections at Different Locations on Vane Endwall [C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. (燃气轮机行业顶会,EI)[25].Chen P, Li X, * Ren J, Jiang H. Measurement and CFD Prediction of Turbine endwall film cooling [C]// CMFF 2018: Conference on Modelling Fluid Flow, 2018.[26].Chen P, Li X*, Ren J, Jiang H. Numerical Investigation on the Effect of Slot Leakage on a NGV with 2D Contoured Endwall: Adiabatic Effectiveness and Aerodynamic Loss[C]//ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. (燃气轮机行业顶会,EI)[27].孙晓琦,孙思谋,陈娉婷*,毛军逵. 基于自相关函数的气膜孔内形貌表征方法研究[C].中国工程热物理年会传热传质分会,2024,中国成都. [28].Shi W, Chen P, Li X*, et al. Uncertainty quantification of the effects of squealer tip geometry deviation on aerothermal performance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020: 0957650919898617.[29].Shi W, Chen P, Li X*, et al. Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole[J]. Aerospace, 2019, 6(4): 46.[30].Shi W, Chen P, Li X*, et al. Effects of Squealer Tip Geometry Deviation on Flow Field and Aerodynamic Performance Using Uncertainty Quantification Method and Sensitivity Analysis Method [C]// GPPS-BJ-2019:Global Power and Propulsion[31].Zeng L, Chen P, Li X*, Ren J, Jiang H. Influence of simplifications of blade in gas turbine on film cooling performance[J]. Applied Thermal Engineering, 2018, 128: 877-886.[32].Qin Y, Chen P, Ren J*, Jiang H. Effects of wall curvature and streamwise pressure gradient on film cooling effectiveness[J]. Applied Thermal Engineering, 2016, 107: 776-784. [33].Chenwei, Z. H. A. O., Zecan, T. U., Junkui, M. A. O.*, Jian, H. U. I., & Pingting, C. H. E. N. (2024). Multi-scale collaborative design method for macroscopic thermal optimization and mesoscopic woven structure of hypersonic vehicle’s TOCMC leading edge. Chinese Journal of Aeronautics.[34].Cheng, Z., Li, S., Tong, X., Chen, P., Zeng, M., & Wang, Q. (2024). Material preparation and heat transfer characterization of porous graphene aerogel composite phase change material. International Communications in Heat and Mass Transfer, 152, 107280.[35].Zhao C, Tu Z, Mao J*, Chen P. The design of special woven-preformed structures for the high-performance film cooling with undamaged fibers based on 2.5 D ceramic matrix composites[J]. Composite Structures, 2022, 283: 115114.[36].Alqefl, M. *, Nawathe, K., Chen, P., Zhu, R., Kim, Y, & Simon, T. Aero-thermal Aspects of Film Cooled Nozzle Guide Vane Endwall - Part 1: Aerodynamics[J]. Journal of Turbomachinery, 2021, 1-54.[37].Alqefl, M. *, Nawathe, K., Chen, P., Zhu, R., Kim, Y, & Simon, T. Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane[J]. Journal of Turbomachinery, 2021, 143(3):1-54.[38].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. AERO-THERMAL ASPECTS OF FILM COOLED NOZZLE GUIDE VANE ENDWALL - PART 1: AERODYNAMICS [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[39].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. AERO-THERMAL ASPECTS OF FILM COOLED NOZZLE GUIDE VANE ENDWALLS – PART 2 THERMAL MEASUREMENTS [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[40].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. EFFECTS OF ENDWALL FILM COOLANT FLOW RATE ON SECONDARY FLOWS AND COOLANT MIXING IN A FIRST STAGE NOZZLE GUIDE VANE [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[41].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. A Multi Plenum Superposition Method for Scalar Transport with Application to Endwall Film Cooling [C]// IGTC 2019: International Gas Turbine Congress 2019 Tokyo[42].王骁, 李水清*, 陈娉婷,等. 环境辐射对固体燃料火焰传播速度的影响[J]. 工程热物理学报, 2013(12):2401-2404. (本人本科《燃烧学》课程大作业)血流动力学模拟(与北京天坛医院(神经外科顶尖医院)合作研究):[43]. Ma L, Chen Y, Chen P, Ma L, Yan D, Li R, Li Z, Zhang H, Han H, Yuan K, Li R. Quantitative hemodynamics of draining veins in brain arteriovenous malformation: a preliminary study based on computational fluid dynamics. Frontiers in Neurology. 2024 Dec 11;15:1474857.[44]. Li R, Chen Y, Chen P, Ma L, Han H, Li Z, Zhou W, Zhou Y, Wang M, Sun S, Zhao Y. Lesion filling index predicts brain arteriovenous malformation obliteration after Gamma knife radiosurgery: a hemodynamic analysis. Neurosurgical Review. 2024 Dec;47(1):1-1.[45]. Li, R., Chen, Y., Chen, P., Ma, L., Han, H., Li, Z., ... & Zhao, Y. (2024). Lesion-Filling Index from Quantitative DSA Correlates with Hemorrhage of Cerebral AVM. American Journal of Neuroradiology.(神经外科领域顶刊,Top期刊)[46]. Zhang, Y., Chen, Y., Li, R., Ma, L., Han, H., Li, Z., Zhang, H., Yuan, K., Zhao, Y., Jin, W. and Chen, P., 2024. Overloaded transnidal pressure gradient as the hemodynamic mechanism leading to arteriovenous malformation rupture: a quantitative analysis using intravascular pressure monitoring and color-coded digital subtraction angiography. Journal of NeuroInterventional Surgery. (神经外科领域顶刊,中科院一区Top)[47]. Li, R., Chen, P., Han, H., Li, Z., Chen, X., Chen, Y., & Zhao, Y. (2023). Association of nidus size and rupture in brain arteriovenous malformations: Insight from angioarchitecture and hemodynamics. Neurosurgical Review, 46(1), 216.[48. Li R, Chen Y, Li Z, Han H, Chen P, Chen X, Zhao Y. : Letter to "Preoperative flow analysis of arteriovenous malformations and obliteration response after stereotactic radiosurgery"[J]. Journal of Neurosurgery, 2022.(神经外科领域顶刊,Top期刊)[49]. Chen Y, Chen P, Li R, et al. Rupture-related quantitative hemodynamics of the supratentorial arteriovenous malformation nidus[J]. Journal of Neurosurgery, 2022, 1(aop): 1-10.(神经外科领域顶刊,Top期刊)[50]. Li, R., Chen, Y., Li, Z., Han, H., Chen, P., Chen, X., & Zhao, Y. (2022). Blood flow analysis for obliteration of AVMs. Journal of Neurosurgery, 138(4), 1166-1167.[51]. Li Z, Chen Y, Chen P, et al. Quantitative evaluation of hemodynamics after partial embolization of brain arteriovenous malformations[J]. Journal of neurointerventional surgery, 2022. (神经外科领域顶刊,中科院一区Top)请各位小可爱不要犹豫,联系我(cpt09@nuaa.edu.cn),咨询加入高效燃烧传热与混合推进团队(负责人:毛军逵教授/院长/长江学者)及“智能流体传热”研究小组(负责人:陈娉婷)!

  • Gender:Female
  • Alma Mater:清华大学
  • Education Level:With Certificate of Graduation for Doctorate Study
  • Degree:Doctoral Degree in Engineering
  • Business Address:A10 532
  • Contact Information:cpt09@nuaa.edu.cn
  • E-Mail:
Copyright©2018- Nanjing University of Aeronautics and Astronautics·Informationization Department(Informationization Technology Center) Click:
  MOBILE Version

The Last Update Time:..