Educational Experience
Work Experience
Social Affiliations
Research Focus
|
Personal Information个人简介:陈娉婷,1992年生,博士,副教授,硕士生导师,2021年3月至今在南京航空航天大学能源与动力学院燃烧传热与热能系(205系)工作。入选中国科协青年人才托举工程(第七届),江苏省“双创博士”。主持国家自然科学基金青年项目1项,获得南京留学人员科技创新项目择优资助,并以主要负责人身份承担多项国家级项目专题;研究团队:“高效燃烧传热与混合推进”团队,团队负责人:毛军逵教授/院长/长江学者,团队共10+名导师共同提供指导;教师团队: 第二批“全国高校黄大年式教师团队”-“动力系统能量高效利用”团队,团队负责人:毛军逵教授/院长/长江学者;研究小组:“智能流体传热”小组,负责人:陈娉婷。学术荣誉:南京市留学人员科技创新项目择优资助,2023;江苏省“双创博士”,2022;中国科协青年人才托举工程(第7届),2021;等。教育经历:2013.8-2019.10 清华大学 动力工程及工程热物理 博士 导师:任静教授、蒋洪德院士;2017.10-2018.11 University of Minnesota 机械工程 联合培养博士 导师:Prof. Terrence W. Simon;2009.8-2013.7 清华大学 能源动力系统及自动化 学士 导师:王淑娟教授。研究方向:航空发动机涡轮高效传热及冷却;数字孪生与机器学习;航空发动机空气系统及热分析;血流动力学模拟。教学工作:2024年起担任本科《热工基础》课程负责人,2023-2024学年评教前10%、2023年起担任《工程热力学基础》课程主讲人,2023-2024/2022-2023学年评教“优秀”。招生需求:专硕:085800 能源动力 04能源和动力工程;学硕:080700 动力工程及工程热物理 04推进系统燃烧与传热;团队每年招收硕士生20+名,博士生5+名。欢迎对本团队及本小组研究方向感兴趣的同学咨询报考!研究小组每年招收本科生自主项目设计/毕业设计3-6项,老师可以提供一些想法,也鼓励大家提出自己的点子,团队将提供实验场地、计算资源、经费支持和相关指导。(2023届毕设同学的工作已发表在ISTFD、工热年会等国际、国内会议上)发表学术论文情况: https://www.researchgate.net/profile/Pingting-Chen/research传热传质及高效冷却: [1]. Liu, H., Zhang, D., Chen, P.*, & Han, X. (2024). Numerical investigation on effects of low Reynolds number conditions on fan shaped film cooling performances. Physics of Fluids, 36(6). (中科院1区Top期刊,同学研二上学期投稿)[2]. Zhang, D., Liu, H., Chen, P.*, & Mao, J. (2024). Numerical analysis on multiple parameters for overall cooling effectiveness of impingement effusion cooling with low Reynolds number. International Communications in Heat and Mass Transfer, 153, 107366.(中科院1区Top期刊,同学研一上学期投稿)[3]. Yang, Y., Mao, J.*, Chen, P.*, Guo, N., & Wang, F. (2024). Prediction and Analysis of Transient Turbine Tip Clearance Using Long Short-Term Memory Neural Network. Journal of Engineering for Gas Turbines and Power, 1-31. (燃气轮机行业顶刊,合作指导博士生)[4]. Yang, Y., Mao, J.*, Guo, N., Chen, P.* and Wang, F., 2023. Evaluation of Turbine Tip Clearance with Performance Degradation Using Multilayer Perceptron. Journal of Engineering for Gas Turbines and Power, pp.1-45.(燃气轮机行业顶刊,合作指导博士生)[5]. Yang, Y., Mao J*, Chen P*, Zhang, H., & Tang, H. (2023). Numerical investigation on transpiration cooling performance with different porosities and mainstream pressure gradients. International Journal of Thermal Sciences, 2023,184, 107991.(中科院2区,JCRQ1,合作指导博士生)[6]. Yang Y, Mao J *, Chen P*, et al. Numerical investigation of impingement heat transfer on the crossflow channel with vortex generators[J]. Applied Thermal Engineering, 2022, 201: 117780. (中科院1区Top期刊,合作指导博士生)[7]. Bi S, Mao J*, Chen P*, et al.Effect of Multiple Cavities and Tip Injection on the Aerothermal Characteristics of the Squealer Tip in Turbine Stage. Applied Thermal Engineering, 119631. (中科院1区Top期刊,合作指导博士生)[8]. Chen P, Zhao K, Li X*, et al. Full Coverage Effects of Varying Non-axisymmetric Contours of the Turbine Endwall on Aerodynamics and Heat Transfer Aspects: A Sensitivity Analysis Study [J]. International Journal of Thermal Sciences,2021.(中科院2区,JCRQ1)[9]. Chen, P., Shi, W., Li, X., Ren, J., & Jiang, H. (2021). Numerical study of using dean vortices to enhance the film cooling performance for fan shaped hole. International Journal of Thermal Sciences, 165, 106913.(中科院2区,JCRQ1)[10].Chen P, Li, X*., Ren, J., &Jiang, H. Multi-objective optimization of non-axisymmetric contoured endwall for axial turbines[J]. International Journal of Gas Turbine, Propulsion and Power Systems, 2021, 12(1): 1-9.[11].Chen P, Wang L, Li X*, et al. Effect of axial turbine non-axisymmetric endwall contouring on film cooling at different locations[J]. International Journal of Heat and Mass Transfer, 2020(中科院1区Top期刊)[12].Chen P, Wang L, Li X*, et al. Enhancement of Film Cooling Effectiveness Using Dean Vortices[J]. Journal of Turbomachinery, 2020, 142(1). (燃气轮机行业顶刊)[13].Chen P, Xue Q, Li X* et al. Full coverage film cooling on a non-axisymmetric contoured endwall and the baseline endwall[J]. International Journal of Thermal Sciences, 2020, 158: 106562.[14].Chen P, Li X*, Ren J, et al. Influence of endwall 2D contouring on endwall adiabatic cooling effectiveness and aerodynamic performance[J]. International Journal of Heat and Mass Transfer, 2019, 137: 690-702. (中科院1区Top期刊)[15].Chen P, Alqefl M, Li X*, et al. Cooling effectiveness and aerodynamic performance in a 2D-Contoured endwall passage with different mass flow ratios[J]. International Journal of Thermal Sciences, 2019, 142: 233-246.[16].陈娉婷*,李雪英,任静,蒋洪德.燃烧室温度剖面对非轴对称端壁冷却的影响[J].工程热物理学报,2019,40(01):191-197.[17]..陈娉婷*,秦晏旻,任静,蒋洪德.带肋通道和气膜冷却交互下的绝热和耦合传热研究[J].工程热物理学报,2016,37(07):1422-1426.[18].陈娉婷*,李雪英,任静,蒋洪德.冲击衬套对于一级静叶气膜孔流量分配和气膜冷却效率的影响[J].工程热物理学报,2015,36(08):1662-1665. [19]..Xiaoqi Sun, Simo Sun,Pingting Chen*, et al. Research on the in-hole Roughness Modeling of Film Cooling Based on the Autocorrelation[C]// Function,ISTFD 2023(部分同学本科毕设)[20].Dingcheng Zhang, HaibinLiu, Pingting Chen*, et al. Experimental Modeling and Cooling Performance of Turbine Cooling withImpingement and Film Cooling under Low Reynolds Number Conditions [C]// Function,ISTFD 2023(同学本科毕设)[21].Chen P, Wang L, Li X*, Ren J, Jiang H. Enhancement of Film Cooling Effectiveness using Dean Vortices [C]. ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition.(燃气轮机行业顶会,EI)[22].Chen P, Li X*, Ren J, Jiang H. Multi-objective Optimization of Non-axisymmetric Contoured Endwall for Axial Turbines [C]// IGTC 2019: International Gas Turbine Congress 2019 Tokyo.[23].Chen P, Gao H, Li X*, Ren J, Jiang H. Effects of Endwall 3D Contouring on Film Cooling Effectiveness of Cylindrical Hole Injections at Different Locations on Vane Endwall [C]//ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. (燃气轮机行业顶会,EI)[24].Chen P, Li X, * Ren J, Jiang H. Measurement and CFD Prediction of Turbine endwall film cooling [C]// CMFF 2018: Conference on Modelling Fluid Flow, 2018.[25].Chen P, Li X*, Ren J, Jiang H. Numerical Investigation on the Effect of Slot Leakage on a NGV with 2D Contoured Endwall: Adiabatic Effectiveness and Aerodynamic Loss[C]//ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. (燃气轮机行业顶会,EI)[26].孙晓琦,孙思谋,陈娉婷*,毛军逵. 基于自相关函数的气膜孔内形貌表征方法研究[C].中国工程热物理年会传热传质分会,2024,中国成都. [27].Shi W, Chen P, Li X*, et al. Uncertainty quantification of the effects of squealer tip geometry deviation on aerothermal performance[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020: 0957650919898617.[28].Shi W, Chen P, Li X*, et al. Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole[J]. Aerospace, 2019, 6(4): 46.[29].Shi W, Chen P, Li X*, et al. Effects of Squealer Tip Geometry Deviation on Flow Field and Aerodynamic Performance Using Uncertainty Quantification Method and Sensitivity Analysis Method [C]// GPPS-BJ-2019:Global Power and Propulsion[30].Zeng L, Chen P, Li X*, Ren J, Jiang H. Influence of simplifications of blade in gas turbine on film cooling performance[J]. Applied Thermal Engineering, 2018, 128: 877-886.[31].Qin Y, Chen P, Ren J*, Jiang H. Effects of wall curvature and streamwise pressure gradient on film cooling effectiveness[J]. Applied Thermal Engineering, 2016, 107: 776-784. [32].Chenwei, Z. H. A. O., Zecan, T. U., Junkui, M. A. O.*, Jian, H. U. I., & Pingting, C. H. E. N. (2024). Multi-scale collaborative design method for macroscopic thermal optimization and mesoscopic woven structure of hypersonic vehicle’s TOCMC leading edge. Chinese Journal of Aeronautics.[33].Cheng, Z., Li, S., Tong, X., Chen, P., Zeng, M., & Wang, Q. (2024). Material preparation and heat transfer characterization of porous graphene aerogel composite phase change material. International Communications in Heat and Mass Transfer, 152, 107280.[34].Zhao C, Tu Z, Mao J*, Chen P. The design of special woven-preformed structures for the high-performance film cooling with undamaged fibers based on 2.5 D ceramic matrix composites[J]. Composite Structures, 2022, 283: 115114.[35].Alqefl, M. *, Nawathe, K., Chen, P., Zhu, R., Kim, Y, & Simon, T. Aero-thermal Aspects of Film Cooled Nozzle Guide Vane Endwall - Part 1: Aerodynamics[J]. Journal of Turbomachinery, 2021, 1-54.[36].Alqefl, M. *, Nawathe, K., Chen, P., Zhu, R., Kim, Y, & Simon, T. Effects of Endwall Film Coolant Flow Rate on Secondary Flows and Coolant Mixing in a First Stage Nozzle Guide Vane[J]. Journal of Turbomachinery, 2021, 143(3):1-54.[37].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. AERO-THERMAL ASPECTS OF FILM COOLED NOZZLE GUIDE VANE ENDWALL - PART 1: AERODYNAMICS [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[38].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. AERO-THERMAL ASPECTS OF FILM COOLED NOZZLE GUIDE VANE ENDWALLS – PART 2 THERMAL MEASUREMENTS [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[39].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. EFFECTS OF ENDWALL FILM COOLANT FLOW RATE ON SECONDARY FLOWS AND COOLANT MIXING IN A FIRST STAGE NOZZLE GUIDE VANE [C]//ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition.[40].Alqefl M. H*, Nawathe K, Chen P, Zhu R, Kim Y. W, Simon T. W. A Multi Plenum Superposition Method for Scalar Transport with Application to Endwall Film Cooling [C]// IGTC 2019: International Gas Turbine Congress 2019 Tokyo[41].王骁, 李水清*, 陈娉婷,等. 环境辐射对固体燃料火焰传播速度的影响[J]. 工程热物理学报, 2013(12):2401-2404. (本人本科《燃烧学》课程大作业) 血流动力学模拟(与北京天坛医院(神经外科顶尖医院)合作研究):[42].Li, R., Chen, Y., Chen, P., Ma, L., Han, H., Li, Z., ... & Zhao, Y. (2024). Lesion-Filling Index from Quantitative DSA Correlates with Hemorrhage of Cerebral AVM. American Journal of Neuroradiology.(神经外科领域顶刊,Top期刊)[43].Zhang, Y., Chen, Y., Li, R., Ma, L., Han, H., Li, Z., Zhang, H., Yuan, K., Zhao, Y., Jin, W. and Chen, P., 2024. Overloaded transnidal pressure gradient as the hemodynamic mechanism leading to arteriovenous malformation rupture: a quantitative analysis using intravascular pressure monitoring and color-coded digital subtraction angiography. Journal of NeuroInterventional Surgery. (神经外科领域顶刊,中科院一区Top)[44].Li, R., Chen, P., Han, H., Li, Z., Chen, X., Chen, Y., & Zhao, Y. (2023). Association of nidus size and rupture in brain arteriovenous malformations: Insight from angioarchitecture and hemodynamics. Neurosurgical Review, 46(1), 216.[45].Li R, Chen Y, Li Z, Han H, Chen P, Chen X, Zhao Y. : Letter to "Preoperative flow analysis of arteriovenous malformations and obliteration response after stereotactic radiosurgery"[J]. Journal of Neurosurgery, 2022.(神经外科领域顶刊,Top期刊)[46].Chen Y, Chen P, Li R, et al. Rupture-related quantitative hemodynamics of the supratentorial arteriovenous malformation nidus[J]. Journal of Neurosurgery, 2022, 1(aop): 1-10.(神经外科领域顶刊,Top期刊)[47].Li, R., Chen, Y., Li, Z., Han, H., Chen, P., Chen, X., & Zhao, Y. (2022). Blood flow analysis for obliteration of AVMs. Journal of Neurosurgery, 138(4), 1166-1167.[48].Li Z, Chen Y, Chen P, et al. Quantitative evaluation of hemodynamics after partial embolization of brain arteriovenous malformations[J]. Journal of neurointerventional surgery, 2022. (神经外科领域顶刊,中科院一区Top)请各位小可爱不要犹豫,联系我(cpt09@nuaa.edu.cn),咨询加入高效燃烧传热与混合推进团队(负责人:毛军逵教授/院长/长江学者)及“智能流体传热”研究小组(负责人:陈娉婷)!
|