陈果

个人信息Personal Information

教授 博士生导师

招生学科专业:
交通运输工程 -- 【招收博士、硕士研究生】 -- 民航学院
电子信息 -- 【招收博士、硕士研究生】 -- 民航学院
交通运输 -- 【招收博士、硕士研究生】 -- 民航学院
交通运输工程 -- 【招收硕士研究生】 -- 通用航空与飞行学院
交通运输 -- 【招收硕士研究生】 -- 通用航空与飞行学院

性别:男

学历:研究生(博士后)

学位:工学博士学位

所在单位:通用航空与飞行学院

联系方式:报考研究生咨询的同学请发送短信至:13851875041 或发送邮件至:cgnuaacca@163.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Rolling bearing fault detection based on the hypersphere optimization support vector data description

点击次数:

所属单位:民航学院

发表刊物:J Vib Shock

摘要:In the case of small sample size problems where only the operating data of healthy rolling bearings are available, the support vector data description (SVDD) method was applied to the rolling bearings fault detection and condition evaluation commendably by fusing multidimensional features. However, the complexity of the feature vector space distribution will directly affects the results of SVDD. Aiming at this, a novel rolling bearing fault detection method called hyper-sphere optimization support vector data description (hoSVDD) was proposed. The spatial distribution of feature vectors was improved by the hyper-sphere optimization so that the difficulty in data description was reduced. Hence, the hoSVDD is more suitable for rolling bearing fault detection. Multi-group rolling bearing tests show that: under the conditions of different speeds, different test points, and different types of rolling bearings faults, the proposed hoSVDD performs better than the traditional SVDD method. © 2019, Editorial Office of Journal of Vibration and Shock. All right reserved.

ISSN号:1000-3835

是否译文:

发表时间:2019-01-28

合写作者:Lin, Tong,Teng, Chunyu,Wang, Yun,Ouyang, Wenli

通讯作者:陈果