YOUSEFNEZHAD MUHAMMAD
  • 学位:工学博士学位
  • 所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
所在单位:计算机科学与技术学院/人工智能学院/软件学院
学历:南京航空航天大学

当前位置: 中文主页 >> 科学研究 >> 论文成果
标题:
Deep hyperalignment
点击次数:
所属单位:
计算机科学与技术学院/人工智能学院/软件学院
发表刊物:
Adv. neural inf. proces. syst.
摘要:
This paper proposes Deep Hyperalignment (DHA) as a regularized, deep extension, scalable Hyperalignment (HA) method, which is well-suited for applying functional alignment to fMRI datasets with nonlinearity, high-dimensionality (broad ROI), and a large number of subjects. Unlink previous methods, DHA is not limited by a restricted fixed kernel function. Further, it uses a parametric approach, rank-m Singular Value Decomposition (SVD), and stochastic gradient descent for optimization. Therefore, DHA has a suitable time complexity for large datasets, and DHA does not require the training data when it computes the functional alignment for a new subject. Experimental studies on multi-subject fMRI analysis confirm that the DHA method achieves superior performance to other state-of-the-art HA algorithms. © 2017 Neural information processing systems foundation. All rights reserved.
ISSN号:
1049-5258
是否译文:
发表时间:
2017-01-01
合写作者:
张道强
通讯作者:
YOUSEFNEZHAD MUHAMMAD
发表时间:
2017-01-01
扫一扫用手机查看