YOUSEFNEZHAD MUHAMMAD
  • 学位:工学博士学位
  • 所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:
所在单位:计算机科学与技术学院/人工智能学院/软件学院
学历:南京航空航天大学

当前位置: 中文主页 >> 科学研究 >> 论文成果
标题:
Gradient hyperalignment for multi-subject fMRI data alignment
点击次数:
所属单位:
计算机科学与技术学院/人工智能学院/软件学院
发表刊物:
Lect. Notes Comput. Sci.
摘要:
Multi-subject fMRI data analysis is an interesting and challenging problem in human brain decoding studies. The inherent anatomical and functional variability across subjects make it necessary to do both anatomical and functional alignment before classification analysis. Besides, when it comes to big data, time complexity becomes a problem that cannot be ignored. This paper proposes Gradient Hyperalignment (Gradient-HA) as a gradient-based functional alignment method that is suitable for multi-subject fMRI datasets with large amounts of samples and voxels. The advantage of Gradient-HA is that it can solve independence and high dimension problems by using Independent Component Analysis (ICA) and Stochastic Gradient Ascent (SGA). Validation using multi-classification tasks on big data demonstrates that Gradient-HA method has less time complexity and better or comparable performance compared with other state-of-the-art functional alignment methods. © Springer Nature Switzerland AG 2018.
ISSN号:
0302-9743
是否译文:
发表时间:
2018-01-01
合写作者:
Xu, Tonglin,张道强
通讯作者:
YOUSEFNEZHAD MUHAMMAD
发表时间:
2018-01-01
扫一扫用手机查看