• 其他栏目

    周来水

    • 教授
    • 招生学科专业:
      机械工程 -- 【招收博士、硕士研究生】 -- 机电学院
      航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 机电学院
      机械 -- 【招收博士、硕士研究生】 -- 机电学院
    • 毕业院校:南京航空航天大学
    • 学历:南京航空航天大学
    • 学位:工学博士学位
    • 所在单位:机电学院
    • 办公地点:明故宫校区15-529
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    Regression-Based Three-Dimensional Pose Estimation for Texture-Less Objects

    点击次数:

    所属单位:机电学院

    发表刊物:IEEE Trans Multimedia

    摘要:3-D pose estimation for texture-less objects remains a challenging problem. Previous works either focus on a template matching method to find the nearest template as a candidate, or construct a Hough forest, which utilizes the offset of patches to vote for the object location and pose. By contrast, in this paper, we propose a comprehensive framework to directly regress 3-D poses for the candidates, in which a convolutional neural network-based triplet network is trained to extract discriminating features from the binary images. To make the features suitable for the regression task, a pose-guided method and a regression constraint are employed with the constructed triplet network. We show that the constraint reaches the goal of creating the correlation between the features and 3-D poses. Once the expected features are obtained, the object pose could be efficiently regressed, by training a regression network with a simple structure. For symmetric objects, depth images are treated as an additional channel to feed the triplet network. Experiments on the LineMOD and our own datasets demonstrate our method with high regression precision and efficiency. © 1999-2012 IEEE.

    ISSN号:1520-9210

    是否译文:

    发表时间:2019-11-01

    合写作者:Liu, Yuanpeng,Zong, Hua,Gong, Xiaoxi,吴巧云,Liang, Qingxiao,汪俊

    通讯作者:周来水