周良

副教授 硕士生导师

个人信息

学位:工学博士学位
性别:男
毕业院校:南京航空航天大学
学历:南京航空航天大学
所在单位:计算机科学与技术学院/人工智能学院/软件学院
电子邮箱:

基于深度极限学习机的危险源识别算法HIELM

发表时间:2018-11-12 点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:计算机科学
关键字:危险源识别;深度学习;极限学习机(ELM);分类;
摘要:危险源识别是民用航空管理的重要环节之一,危险源识别结果必须高度准确才能确保飞行的安全。为此,提出了一种基于深度极限学习机的危险源识别算法HIELM(Hazard Identification Algorithm Based on Extreme Learning Machine),设计了一种由多个深层栈式极限学习机(S-ELM)和一个单隐藏层极限学习机(ELM)构成的深层网络结构。算法中,多个深层S-ELM使用平行结构,各自可以拥有不同的隐藏结点个数,按照危险源领域分类接受危险源状态信息完成预学习,并结合识别特征改进网络输入权重的产生方式。在单隐藏层ELM中,深层ELM的预学习结果作为其输入,改进了反向传播算法,提高了网络识别的精确度。同时,分别训练各深层S-ELM,缓解了高维数据训练的内存压力和节点过多产生的过拟合现象。
是否译文:
发表时间:2017-05-15
合写作者:李诗瑶,刘虎
通讯作者:周良
发表时间:2017-05-15

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)

访问量: 本月访问: 今日访问量: 最后更新时间:--