扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 闫钧华 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zjh4/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    光学工程 -- 【招收博士、硕士研究生】 -- 航天学院
    控制科学与工程 -- 【招收硕士研究生】 -- 航天学院
    航空宇航科学与技术 -- 【招收硕士研究生】 -- 航天学院
    电子信息 -- 【招收博士、硕士研究生】 -- 航天学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
No-reference remote sensing image quality assessment based on gradient-weighted natural scene statistics in spatial domain

点击次数:
所属单位:航天学院
发表刊物:J. Electron. Imaging
摘要:Considering the relatively poor real-time performance when extracting transform-domain image features and the insufficiency of spatial domain features extraction, a no-reference remote sensing image quality assessment method based on gradient-weighted spatial natural scene statistics is proposed. A 36-dimensional image feature vector is constructed by extracting the local normalized luminance features and the gradient-weighted local binary pattern features of local normalized luminance map in three scales. First, a support vector machine classifier is obtained by learning the relationship between image features and distortion types. Then based on the support vector machine classifier, the support vector regression scorer is obtained by learning the relationship between image features and image quality scores. A series of comparative experiments were carried out in the optics remote sensing image database, the LIVE database, the LIVEMD database, and the TID2013 database, respectively. Experimental results show the high accuracy of distinguishing distortion types, the high consistency with subjective scores, and the high robustness of the method for remote sensing images. In addition, experiments also show the independence for the database and the relatively high operation efficiency of this method. © 2019 The Authors.
ISSN号:1017-9909
是否译文:否
发表时间:2019-01-01
合写作者:Bai, Xuehan,Xiao, Yongqi,Zhang, Yin,何章银,Lv, Xiangyang
通讯作者:闫钧华

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)