扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 闫钧华 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zjh4/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    光学工程 -- 【招收博士、硕士研究生】 -- 航天学院
    控制科学与工程 -- 【招收硕士研究生】 -- 航天学院
    航空宇航科学与技术 -- 【招收硕士研究生】 -- 航天学院
    电子信息 -- 【招收博士、硕士研究生】 -- 航天学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
No-reference image quality assessment based on AdaBoost-BP neural network in wavelet domain

点击次数:
所属单位:航天学院
发表刊物:J Syst Eng Electron
摘要:Considering the relatively poor robustness of quality scores for different types of distortion and the lack of mechanism for determining distortion types, a no-reference image quality assessment (NR-IQA) method based on the AdaBoost BP neural network in the wavelet domain (WABNN) is proposed. A 36- dimensional image feature vector is constructed by extracting natural scene statistics (NSS) features and local information entropy features of the distorted image wavelet sub-band coefficients in three scales. The ABNN classifier is obtained by learning the relationship between image features and distortion types. The ABNN scorer is obtained by learning the relationship between image features and image quality scores. A series of contrast experiments are carried out in the laboratory of image and video engineering (LIVE) database and TID2013 database. Experimental results show the high accuracy of the distinguishing distortion type, the high consistency with subjective scores and the high robustness of the method for distorted images. Experiment results also show the independence of the database and the relatively high operation efficiency of this method. © 1990-2011 Beijing Institute of Aerospace Information.
ISSN号:1671-1793
是否译文:否
发表时间:2019-04-01
合写作者:Bai, Xuehan,Zhang, Wanyi,Xiao, Yongqi,Chatwin, Chris,Young, Rupert,Birch, Phil
通讯作者:闫钧华

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)