扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 闫钧华 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/zjh4/zh_CN/index.htm

  •   教授
  • 招生学科专业:
    光学工程 -- 【招收博士、硕士研究生】 -- 航天学院
    控制科学与工程 -- 【招收硕士研究生】 -- 航天学院
    航空宇航科学与技术 -- 【招收硕士研究生】 -- 航天学院
    电子信息 -- 【招收博士、硕士研究生】 -- 航天学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Enhanced Image Quality Assessment based on the Joint Similarity Feature

点击次数:
所属单位:航天学院
发表刊物:JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY
关键字:INFORMATION INDEX
摘要:Most existing image quality assessment algorithms are designed for distorted images, while there is no special assessment for enhanced images. However, the existing assessment indices are related to image enhancement methods. In an attempt to design a quality assessment algorithm for enhanced images, deep research into the correlation between image enhancement and image quality has been carried out. Based on the four major features of image enhancement methods, which are lightness, contrast, saturation and sharpness, a new enhanced image quality assessment (EIQA) index which combines multiple similar features is proposed. Experimental results show that the proposed assessment index has a good consistency with the subjective score and has excellent performance for enhanced image quality assessment. In current research, the SROCC (Spearman's rank correlation coefficient) and PLCC (Pearson linear correlation coefficient) of the proposed index are both greater than 0.7. Moreover, the algorithm has high operating efficiency. (c) 2017 Society for Imaging Science and Technology.
ISSN号:1062-3701
是否译文:否
发表时间:2017-09-01
合写作者:Zhu, Ke,Zhang, Wanyi,Wang, Jingcheng,Xiao, Yongqi
通讯作者:闫钧华

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)