的个人主页 http://faculty.nuaa.edu.cn/zjh4/zh_CN/index.htm
点击次数:
所属单位:航天学院
发表刊物:中国图象图形学报
关键字:目标跟踪;形变;尺度变化;图像显著性;特征点匹配;
摘要:目的针对目标在跟踪过程中出现剧烈形变,特别是剧烈尺度变化的而导致跟踪失败情况,提出融合图像显著性与特征点匹配的目标跟踪算法。方法首先利用改进的BRISK(binary robust invariant scalable keypoints)特征点检测算法,对视频序列中的初始帧提取特征点,确定跟踪算法中的目标模板和目标模板特征点集合;接着对当前帧进行特征点检测,并与目标模板特征点集合利用FLANN(fast approximate nearest neighbor search library)方法进行匹配得到匹配特征点子集;然后融合匹配特征点和光流特征点确定可靠特征点集;再后基于可靠特征点集和目标模板特征点集计算单应性变换矩阵粗确定目标跟踪框,继而基于LC(local contrast)图像显著性精确定目标跟踪框;最后融合图像显著性和可靠特征点自适应确定目标跟踪框。当连续三帧目标发生剧烈形变时,更新目标模板和目标模板特征点集。结果为了验证算法性能,在OTB2013数据集中挑选出具有形变特性的8个视频序列,共2214帧图像作为实验数据集。在重合度实验中,本文算法能够达到0.567 1的平均重合度,优于当前先进的跟踪算法;在重合度成功率实验中,本文算法也比当前先进的跟踪算法具有更好的跟踪效果。最后利用Vega Prime仿真了无人机快速抵近飞行下目标出现剧烈形变的航拍视频序列,序列中目标的最大形变量超过14,帧间最大形变量达到1.72,实验表明本文算法在该视频序列上具有更好的跟踪效果。本文算法具有较好的实时性,平均帧率48.6帧/s。结论本文算法能够实时准确的跟踪剧烈形变的目标,特别是剧烈尺度变化的目标。
是否译文:否
发表时间:2018-03-16
合写作者:杨勇,井庆丰
通讯作者:闫钧华