杨忠
  • 招生学科专业:
    控制科学与工程 -- 【招收博士、硕士研究生】 -- 自动化学院
    电子信息 -- 【招收博士、硕士研究生】 -- 自动化学院
  • 学位:工学博士学位
  • 职称:教授
  • 所在单位:自动化学院
教师英文名称:Yang Zhong
电子邮箱:
所在单位:自动化学院
学历:南京航空航天大学
毕业院校:南京航空航天大学

当前位置: 中文主页 >> 科学研究 >> 论文成果
标题:
Aircraft detection in remote sensing images based on saliency and convolution neural network
点击次数:
所属单位:
自动化学院
发表刊物:
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
关键字:
Remote sensing image Detection Saliency Convolution neural network
摘要:
New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep convolution network based on region proposal for detection, there are many negative samples in the generated region proposal, which will affect the model detection precision and efficiency. Saliency uses the human visual attention mechanism to achieve the bottom-up object detection. Since replacing the selective search with saliency can greatly reduce the number of proposal areas, we will get some region of interests (RoIs) and their position information by using the saliency algorithm based on the background priori for the remote sensing image. And then, the position information is mapped to the feature vector of the whole image obtained by deep convolution neural network. Finally, the each RoI will be classified and fine-tuned bounding box. In this paper, our model is compared with Fast-RCNN that is the current state-of-the-art detection model. The mAP of our model reaches 99%, which is 12.4% higher than that of Fast-RCNN. In addition, we also study the effect of different iterations on model and find the model of 10,000 iterations already has a higher accuracy. Finally, we compare the results of different number of negative samples and find the detection accuracy is highest when the number of negative samples reaches 400.
ISSN号:
1687-1472
是否译文:
发表时间:
2018-02-01
合写作者:
Hu, Guoxiong,Han, Jiaming,Huang, Li,Gong, Jun,Xiong, Naixue
通讯作者:
杨忠
发表时间:
2018-02-01
扫一扫用手机查看