扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 袁家斌 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/yjb1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Efficient and Intelligent Density and Delta-Distance Clustering Algorithm

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING
关键字:LSH Outlier detection Density Delta distance Clustering
摘要:Density and delta-distance clustering (DDC) is an ideal clustering method that computes the density and delta distance of data. When data derived from the two indicators are large, these areas can be defined as cluster centers. DDC has good clustering performance compared with some other clustering algorithms. However, DDC has a high time complexity and requires manual identification of cluster centers. To fill these gaps, an efficient and intelligent DDC (EIDDC) algorithm is proposed in this study. EIDDC begins from using a sampling method based on locality-sensitive hashing (LSH) to obtain a small-scale dataset. The density and delta distance of each data point are calculated from this dataset to reduce time complexity. Cluster centers are intelligently recognized by utilizing density-based spatial clustering of applications with noise-based outlier detection technology. Experiment results show that LSH can obtain good representatives of the original dataset and that the proposed outlier detection method can recognize the cluster centers of a given dataset. The results also reveal the efficiency of EIDDC.
ISSN号:2193-567X
是否译文:否
发表时间:2018-12-01
合写作者:Liu, Xuejuan,Zhao, Hanchi
通讯作者:Liu, Xuejuan,袁家斌

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)