扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 袁家斌 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/yjb1/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    软件工程 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    网络空间安全 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
    电子信息 -- 【招收硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation

点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:ENERGIES
关键字:long short-term memory neural networks similar day extreme gradient boosting k-means empirical mode decomposition short-term load forecasting
摘要:Accurate load forecasting is an important issue for the reliable and efficient operation of a power system. This study presents a hybrid algorithm that combines similar days (SD) selection, empirical mode decomposition (EMD), and long short-term memory (LSTM) neural networks to construct a prediction model (i.e., SD-EMD-LSTM) for short-term load forecasting. The extreme gradient boosting-based weighted k-means algorithm is used to evaluate the similarity between the forecasting and historical days. The EMD method is employed to decompose the SD load to several intrinsic mode functions (IMFs) and residual. Separated LSTM neural networks were also employed to forecast each IMF and residual. Lastly, the forecasting values from each LSTM model were reconstructed. Numerical testing demonstrates that the SD-EMD-LSTM method can accurately forecast the electric load.
ISSN号:1996-1073
是否译文:否
发表时间:2017-08-01
合写作者:Zheng, Huiting,陈龙
通讯作者:袁家斌

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)