谢少军

个人信息Personal Information

教授

招生学科专业:
电气工程 -- 【招收博士、硕士研究生】 -- 自动化学院
能源动力 -- 【招收博士、硕士研究生】 -- 自动化学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:自动化学院

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Fast Diagnosis Method for Submodule Failures in MMCs Based on Improved Incremental Predictive Model of Arm Current

点击次数:

所属单位:自动化学院

发表刊物:JOURNAL OF POWER ELECTRONICS

关键字:Fault detection Fault location Modular multilevel converter (MMC) Predictive model Submodule (SM) failure

摘要:The rapid and correct isolation of faulty submodules (SMs) is of great importance for improving the reliability of modular multilevel converters (MMCs). Therefore, a fast diagnosis method containing fault detection and fault location determination was presented in this paper. An improved incremental predictive model of arm current was proposed to detect failures, and the multi-step prediction method was used to eliminate the negative impact of disturbances. Moreover, a control method was proposed to strengthen the fault characteristics to rapidly locate faulty arms and faulty SMs by detecting the variation rate of the SM capacitor voltage. The proposed method can rapidly and easily locate faulty SMs under different load conditions without the need for additional sensors. The experimental results have validated the effectiveness of the proposed method by using a single-phase MMC with four SMs per arm.

ISSN号:1598-2092

是否译文:

发表时间:2018-09-01

合写作者:徐坤山

通讯作者:徐坤山,谢少军