![]() |
个人信息Personal Information
教授 博士生导师
招生学科专业:
应用统计 -- 【招收硕士研究生】 -- 数学学院
数学 -- 【招收博士、硕士研究生】 -- 数学学院
毕业院校:浙江大学
学历:浙江大学
学位:理学博士学位
所在单位:理学院
办公地点:理学院352
电子邮箱:
A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical L-p framework
点击次数:
所属单位:理学院
发表刊物:JOURNAL OF DIFFERENTIAL EQUATIONS
关键字:Compressible Navier-Stokes-Poisson system Decay estimates Critical Besov spaces
摘要:The compressible Navier-Stokes-Poisson system takes the form of usual Navier-Stokes equations coupled with the self-consistent Poisson equation, which is used to simulate the transport of charged particles under the electrostatic potential force. In this paper, we focus on the large-time behavior of global strong solutions in the L-p critical Besov spaces. Inspired by the dissipative effect arising from Poisson potential, we formulate a new regularity assumption of low frequencies and then establish the sharp time-weighted inequality, which leads to the optimal time-decay estimates of strong solutions. Indeed, we see that the decay of density is faster at the half rate than that of velocity, which is a different ingredient in comparison with the situation of compressible Navier-Stokes equations. Our proof mainly depends on tricky and non classical Besov product estimates with respect to various Sobolev embeddings. (C) 2018 Elsevier Inc. All rights reserved.
ISSN号:0022-0396
是否译文:否
发表时间:2019-05-05
合写作者:Shi, Weixuan
通讯作者:徐江