徐江

个人信息Personal Information

教授 博士生导师

招生学科专业:
应用统计 -- 【招收硕士研究生】 -- 数学学院
数学 -- 【招收博士、硕士研究生】 -- 数学学院

毕业院校:浙江大学

学历:浙江大学

学位:理学博士学位

所在单位:理学院

办公地点:理学院352

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

A sharp time-weighted inequality for the compressible Navier-Stokes-Poisson system in the critical L-p framework

点击次数:

所属单位:理学院

发表刊物:JOURNAL OF DIFFERENTIAL EQUATIONS

关键字:Compressible Navier-Stokes-Poisson system Decay estimates Critical Besov spaces

摘要:The compressible Navier-Stokes-Poisson system takes the form of usual Navier-Stokes equations coupled with the self-consistent Poisson equation, which is used to simulate the transport of charged particles under the electrostatic potential force. In this paper, we focus on the large-time behavior of global strong solutions in the L-p critical Besov spaces. Inspired by the dissipative effect arising from Poisson potential, we formulate a new regularity assumption of low frequencies and then establish the sharp time-weighted inequality, which leads to the optimal time-decay estimates of strong solutions. Indeed, we see that the decay of density is faster at the half rate than that of velocity, which is a different ingredient in comparison with the situation of compressible Navier-Stokes equations. Our proof mainly depends on tricky and non classical Besov product estimates with respect to various Sobolev embeddings. (C) 2018 Elsevier Inc. All rights reserved.

ISSN号:0022-0396

是否译文:

发表时间:2019-05-05

合写作者:Shi, Weixuan

通讯作者:徐江