吴一全

个人信息Personal Information

教授

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

学历:南京航空航天大学

学位:工学博士学位

所在单位:电子信息工程学院

联系方式:nuaaimage@163.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

利用区域信息融合混合活动轮廓模型的河流遥感图像分割

点击次数:

所属单位:电子信息工程学院

发表刊物:中国图象图形学报

关键字:河流遥感图像;图像分割;区域信息融合;混合活动轮廓模型;类内绝对差;自适应权值;

摘要:目的河流遥感图像是背景复杂的非匀质图像,利用传统的活动轮廓模型进行分割往往不够准确。针对这一问题,提出了基于区域信息融合的混合活动轮廓模型来分割河流遥感图像。方法该混合模型将Chan-Vese(CV)模型和基于交叉熵的活动轮廓模型的外部能量约束项相结合,并赋予归一化调节比例系数。通过计算轮廓曲线内外区域像素灰度的方差和交叉熵,指导曲线逼近目标边缘。为了加速混合模型的演化,引入曲线内外区域像素灰度的类内绝对差,取代原有的内外区域能量权值,以提高混合模型的分割效率。结果大量实验结果表明,相较于CV模型、测地线模型、基于交叉熵的活动轮廓模型、CV模型和测地线模型的混合模型以及局部全局灰度拟合能量模型(LGIF),本文混合模型分割河流遥感图像的灵敏度和上述方法都接近于100%,准确率大幅提升,在90%以上,虚警率则下降了约50%,且所需迭代次数和运行时间更少。结论本文提出的混合模型主要适用于具有一定对比度的河流遥感图像,在分割性能和分割效率两个方面,都有明显的优势。

ISSN号:1006-8961

是否译文:

发表时间:2017-02-16

合写作者:韩斌,宋昱

通讯作者:吴一全