English 
吴云华

研究员

招生学科专业:
光学工程 -- 【招收硕士研究生】 -- 航天学院
控制科学与工程 -- 【招收博士、硕士研究生】 -- 航天学院
电子信息 -- 【招收博士、硕士研究生】 -- 航天学院

毕业院校:哈尔滨工业大学

学历:哈尔滨工业大学

学位:工学博士学位

所在单位:航天学院

办公地点:航天学院D11-507

联系方式:yunhuawu@nuaa.edu.cn

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Fast Image Registration for Spacecraft Autonomous Navigation Using Natural Landmarks

点击次数:

所属单位:航天学院

发表刊物:INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING

关键字:REPRESENTATION SEGMENTATION FEATURES PCA

摘要:In order to satisfy the real-time requirement of spacecraft autonomous navigation using natural landmarks, a novel algorithm called CSA-SURF (chessboard segmentation algorithm and speeded up robust features) is proposed to improve the speed without loss of repeatability performance of image registration progress. It is a combination of chessboard segmentation algorithm and SURF. Here, SURF is used to extract the features from satellite images because of its scale- and rotation-invariant properties and low computational cost. CSA is based on image segmentation technology, aiming to find representative blocks, which will be allocated to different tasks to speed up the image registration progress. To illustrate the advantages of the proposed algorithm, PCA-SURF, which is the combination of principle component analysis and SURF, is also analyzed in this paper for comparison. Furthermore, random sample consensus (RANSAC) algorithm is applied to eliminate the false matches for further accuracy improvement. The simulation results show that the proposed strategy obtains good results, especially in scaling and rotation variation. Besides, CSA-SURF decreased 50% of the time in extraction and 90% of the time in matching without losing the repeatability performance by comparing with SURF algorithm. The proposed method has been demonstrated as an alternative way for image registration of spacecraft autonomous navigation using natural landmarks.

ISSN号:1687-5966

是否译文:

发表时间:2018-01-01

合写作者:葛林林,王峰,华冰,陈志明,郭宇锋

通讯作者:吴云华

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)