扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 汪俊 ( 教授 )

    的个人主页 http://faculty.nuaa.edu.cn/wj8/zh_CN/index.htm

  •   教授   博士生导师
  • 招生学科专业:
    机械工程 -- 【招收硕士研究生】 -- 机电学院
    航空宇航科学与技术 -- 【招收博士、硕士研究生】 -- 机电学院
    机械 -- 【招收博士、硕士研究生】 -- 机电学院
    计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Data-Driven Sparse Priors of 3D Shapes

点击次数:
所属单位:机电学院
发表刊物:COMPUTER GRAPHICS FORUM
摘要:We present a sparse optimization framework for extracting sparse shape priors from a collection of 3D models. Shape priors are defined as point-set neighborhoods sampled from shape surfaces which convey important information encompassing normals and local shape characterization. A 3D shape model can be considered to be formed with a set of 3D local shape priors, while most of them are likely to have similar geometry. Our key observation is that the local priors extracted from a family of 3D shapes lie in a very low-dimensional manifold. Consequently, a compact and informative subset of priors can be learned to efficiently encode all shapes of the same family. A comprehensive library of local shape priors is first built with the given collection of 3D models of the same family. We then formulate a global, sparse optimization problem which enforces selecting representative priors while minimizing the reconstruction error. To solve the optimization problem, we design an efficient solver based on the Augmented Lagrangian Multipliers method (ALM). Extensive experiments exhibit the power of our data-driven sparse priors in elegantly solving several high-level shape analysis applications and geometry processing tasks, such as shape retrieval, style analysis and symmetry detection.
ISSN号:0167-7055
是否译文:否
发表时间:2017-10-01
合写作者:Remil, O.,谢乾,谢星宇,Xu, K.
通讯作者:汪俊

 

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)