English 
王华伟

教授 博士生导师

招生学科专业:
交通运输工程 -- 【招收博士、硕士研究生】 -- 民航学院
电子信息 -- 【招收博士、硕士研究生】 -- 民航学院
交通运输 -- 【招收博士、硕士研究生】 -- 民航学院

毕业院校:中国人民解放军国防科学技术大学

学历:国防科学技术大学

学位:博士学位

所在单位:民航学院

办公地点:民航学院办公楼1103房间

联系方式:15062211551

电子邮箱:

手机版

访问量:

最后更新时间:..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Combining multiple deep learning algorithms for prognostic and health management of aircraft

点击次数:

所属单位:民航学院

发表刊物:Aerosp Sci Technol

摘要:The development of airborne sensor monitoring and artificial intelligence technologies provides effective tools for precise prognostic and health management (PHM) of aircraft. This paper presents a PHM model which combines multiple deep learning algorithms for condition assessment, fault classification, sensor prediction, and remaining useful life (RUL) estimation of aircraft systems. A long short-term memory (LSTM) based recurrent network is used to predict multiple multivariate time series of sensors, and deep belief network (DBN) is applied to assess system condition and classify faults of aircraft systems. Then, the RUL can be estimated through the integration of condition assessment and sensor prediction. Finally, the proposed algorithm is validated experimentally using NASA's C-MAPSS dataset, and the results showed a lower error rate and deviation than traditional models. © 2019 Elsevier Masson SAS

ISSN号:1270-9638

是否译文:

发表时间:2019-11-01

合写作者:Che, Changchang,Fu, Qiang,吴富强,Ni, Xiaomei

通讯作者:Che, Changchang,王华伟

版权所有©2018- 南京航空航天大学·信息化处(信息化技术中心)