教授 博士生导师
招生学科专业:
交通运输工程 -- 【招收博士、硕士研究生】 -- 民航学院
电子信息 -- 【招收博士、硕士研究生】 -- 民航学院
交通运输 -- 【招收博士、硕士研究生】 -- 民航学院
毕业院校:中国人民解放军国防科学技术大学
学历:国防科学技术大学
学位:博士学位
所在单位:民航学院
办公地点:民航学院办公楼1103房间
联系方式:15062211551
电子邮箱:
最后更新时间:..
点击次数:
所属单位:民航学院
发表刊物:Aerosp Sci Technol
摘要:The development of airborne sensor monitoring and artificial intelligence technologies provides effective tools for precise prognostic and health management (PHM) of aircraft. This paper presents a PHM model which combines multiple deep learning algorithms for condition assessment, fault classification, sensor prediction, and remaining useful life (RUL) estimation of aircraft systems. A long short-term memory (LSTM) based recurrent network is used to predict multiple multivariate time series of sensors, and deep belief network (DBN) is applied to assess system condition and classify faults of aircraft systems. Then, the RUL can be estimated through the integration of condition assessment and sensor prediction. Finally, the proposed algorithm is validated experimentally using NASA's C-MAPSS dataset, and the results showed a lower error rate and deviation than traditional models. © 2019 Elsevier Masson SAS
ISSN号:1270-9638
是否译文:否
发表时间:2019-11-01
合写作者:Che, Changchang,Fu, Qiang,吴富强,Ni, Xiaomei
通讯作者:Che, Changchang,王华伟