个人信息Personal Information
教授 博士生导师
招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
性别:男
毕业院校:香港中文大学
学历:香港中文大学
学位:工学博士学位
所在单位:计算机科学与技术学院/人工智能学院/软件学院
办公地点:将军路校区计算机学院实验楼106A
联系方式:mqwei@nuaa.edu.cn / mingqiang.wei@gmail.com
电子邮箱:
Robust Low-rank subspace segmentation with finite mixture noise
点击次数:
所属单位:计算机科学与技术学院/人工智能学院/软件学院
发表刊物:PATTERN RECOGNITION
关键字:Subspace clustering Noises modelling Finite mixture model Nonconvex and nonsmooth optimization
摘要:Subspace segmentation or clustering remains a challenge of interest in computer vision when handling complex noise existing in high-dimensional data. Most of the current sparse representation or minimum rank based techniques are constructed on l(1)-norm or l(2)-norm losses, which is sensitive to outliers. Finite mixture model, as a class of powerful and flexible tools for modeling complex noise, becomes a must. Among all the choices, exponential family mixture is extremely useful in practice due to its universal approximation ability for any continuous distribution and hence covers a broader scope of characteristics of noise distribution. Equipped with such a modeling idea, this paper focuses on the complex noise contaminated subspace clustering problem by using finite mixture of exponential power (MoEP) distributions. We then harness a penalized likelihood function to perform automatic model selection and hence avoid over-fitting. Moreover, we introduce a novel prior on the singular values of representation matrix, which leads to a novel penalty in our nonconvex and nonsmooth optimization. The parameters of the MoEP model can be estimated with a Maximum A Posteriori (MAP) method. Meanwhile, the subspace is computed with joint weighted l(p)-norm and Schatten-q quasi-norm minimization. Both theoretical and experimental results show the effectiveness of our method. (C) 2019 Elsevier Ltd. All rights reserved.
ISSN号:0031-3203
是否译文:否
发表时间:2019-09-01
合写作者:Guo, Xianglin,Xie, Xingyu,Liu, Guangcan,Wang, Jun,汪俊
通讯作者:Wang, Jun,魏明强