魏明强

个人信息Personal Information

教授 博士生导师

招生学科专业:
计算机科学与技术 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院
软件工程 -- 【招收硕士研究生】 -- 计算机科学与技术学院
电子信息 -- 【招收博士、硕士研究生】 -- 计算机科学与技术学院

性别:男

毕业院校:香港中文大学

学历:香港中文大学

学位:工学博士学位

所在单位:计算机科学与技术学院/人工智能学院/软件学院

办公地点:将军路校区计算机学院实验楼106A

联系方式:mqwei@nuaa.edu.cn / mingqiang.wei@gmail.com

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Learning-based 3D surface optimization from medical image reconstruction

点击次数:

所属单位:计算机科学与技术学院/人工智能学院/软件学院

发表刊物:OPTICS AND LASERS IN ENGINEERING

关键字:Medical mesh optimization Staircase-sensitive Laplacian filter Normal filtering Normal regression

摘要:Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy. (C) 2017 Elsevier Ltd. All rights reserved.

ISSN号:0143-8166

是否译文:

发表时间:2018-04-01

合写作者:汪俊,郭向林,Wu, Huisi,Xie, Haoran,Wang, Fu Lee,Qin, Jing

通讯作者:Xie, Haoran,魏明强