王鹏

个人信息Personal Information

副教授 博士生导师

招生学科专业:
信息与通信工程 -- 【招收博士、硕士研究生】 -- 电子信息工程学院
电子信息 -- 【招收博士、硕士研究生】 -- 电子信息工程学院

性别:男

毕业院校:哈尔滨工程大学

学位:工学博士学位

所在单位:电子信息工程学院

办公地点:电子信息工程学院128办公室

电子邮箱:

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Subpixel Land Cover Mapping Based on Dual Processing Paths for Hyperspectral Image

点击次数:

所属单位:电子信息工程学院

发表刊物:IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

关键字:Deep Laplacian pyramid networks (DLPN) dual processing paths (DPP) hyperspectral image hyperspectral image and multispectral image fusion subpixel mapping (SPM)

摘要:The subpixel mapping (SPM) technique can handle coarse fractional images derived by unmixing coarse original hyperspectral (HS) image to produce a fine land cover map at the subpixel scale. A popular SPM approach is a two-step model. It first increases the spatial resolution of coarse fractional images by subpixel sharpening to produce fine fractional images and then assigns class labels to each subpixel by the class allocation method. However, there is only a single processing path of the current SPM algorithm, and the information type of the fine fractional images is not rich. To enrich the information type, SPM based on dual processing paths (DPP) is proposed. DPP contains two processing paths, namely spatial-spectral path and multiscale path. First, the coarse original HS image and the high spatial resolution multispectral image are fused by component substitution to produce the fine fractional images with more spatial-spectral information in the spatial-spectral path. At the same time, deep Laplacian pyramid networks are used to obtain the fine fractional images with multiscale information in the multiscale path. The fine fractional images from the two paths are then integrated to generate the improved fraction images with multiscale spatial-spectral information. Finally, the multiscale spatial-spectral information is utilized to allocate class labels by the class allocationmethod. Experimental results on three realHSremote sensing data showthat the proposed DPP outperforms the other SPM methods, demonstrating the effectiveness of the use of DPP in enriching the information type of the fine fractional images.

ISSN号:1939-1404

是否译文:

发表时间:2019-06-01

合写作者:张弓,Wang, Liguo,Leung, Henry,毕辉

通讯作者:王鹏